This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The field of complex numbers is a function. Alternate proof of cnfldfun not requiring that the index set of the components is ordered, but using quadratically many inequalities for the indices. (Contributed by AV, 14-Nov-2021) (Proof shortened by AV, 11-Nov-2024) Revise df-cnfld . (Revised by GG, 31-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldfunALT | |- Fun CCfld |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basendxnplusgndx | |- ( Base ` ndx ) =/= ( +g ` ndx ) |
|
| 2 | basendxnmulrndx | |- ( Base ` ndx ) =/= ( .r ` ndx ) |
|
| 3 | plusgndxnmulrndx | |- ( +g ` ndx ) =/= ( .r ` ndx ) |
|
| 4 | fvex | |- ( Base ` ndx ) e. _V |
|
| 5 | fvex | |- ( +g ` ndx ) e. _V |
|
| 6 | fvex | |- ( .r ` ndx ) e. _V |
|
| 7 | cnex | |- CC e. _V |
|
| 8 | mpoaddex | |- ( u e. CC , v e. CC |-> ( u + v ) ) e. _V |
|
| 9 | mpomulex | |- ( u e. CC , v e. CC |-> ( u x. v ) ) e. _V |
|
| 10 | 4 5 6 7 8 9 | funtp | |- ( ( ( Base ` ndx ) =/= ( +g ` ndx ) /\ ( Base ` ndx ) =/= ( .r ` ndx ) /\ ( +g ` ndx ) =/= ( .r ` ndx ) ) -> Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } ) |
| 11 | 1 2 3 10 | mp3an | |- Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } |
| 12 | fvex | |- ( *r ` ndx ) e. _V |
|
| 13 | cjf | |- * : CC --> CC |
|
| 14 | fex | |- ( ( * : CC --> CC /\ CC e. _V ) -> * e. _V ) |
|
| 15 | 13 7 14 | mp2an | |- * e. _V |
| 16 | 12 15 | funsn | |- Fun { <. ( *r ` ndx ) , * >. } |
| 17 | 11 16 | pm3.2i | |- ( Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } /\ Fun { <. ( *r ` ndx ) , * >. } ) |
| 18 | 7 8 9 | dmtpop | |- dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } = { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } |
| 19 | 15 | dmsnop | |- dom { <. ( *r ` ndx ) , * >. } = { ( *r ` ndx ) } |
| 20 | 18 19 | ineq12i | |- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) |
| 21 | starvndxnbasendx | |- ( *r ` ndx ) =/= ( Base ` ndx ) |
|
| 22 | 21 | necomi | |- ( Base ` ndx ) =/= ( *r ` ndx ) |
| 23 | starvndxnplusgndx | |- ( *r ` ndx ) =/= ( +g ` ndx ) |
|
| 24 | 23 | necomi | |- ( +g ` ndx ) =/= ( *r ` ndx ) |
| 25 | starvndxnmulrndx | |- ( *r ` ndx ) =/= ( .r ` ndx ) |
|
| 26 | 25 | necomi | |- ( .r ` ndx ) =/= ( *r ` ndx ) |
| 27 | disjtpsn | |- ( ( ( Base ` ndx ) =/= ( *r ` ndx ) /\ ( +g ` ndx ) =/= ( *r ` ndx ) /\ ( .r ` ndx ) =/= ( *r ` ndx ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) ) |
|
| 28 | 22 24 26 27 | mp3an | |- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) |
| 29 | 20 28 | eqtri | |- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = (/) |
| 30 | funun | |- ( ( ( Fun { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } /\ Fun { <. ( *r ` ndx ) , * >. } ) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( *r ` ndx ) , * >. } ) = (/) ) -> Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) ) |
|
| 31 | 17 29 30 | mp2an | |- Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) |
| 32 | slotsdifplendx | |- ( ( *r ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( le ` ndx ) ) |
|
| 33 | 32 | simpri | |- ( TopSet ` ndx ) =/= ( le ` ndx ) |
| 34 | dsndxntsetndx | |- ( dist ` ndx ) =/= ( TopSet ` ndx ) |
|
| 35 | 34 | necomi | |- ( TopSet ` ndx ) =/= ( dist ` ndx ) |
| 36 | slotsdifdsndx | |- ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) |
|
| 37 | 36 | simpri | |- ( le ` ndx ) =/= ( dist ` ndx ) |
| 38 | fvex | |- ( TopSet ` ndx ) e. _V |
|
| 39 | fvex | |- ( le ` ndx ) e. _V |
|
| 40 | fvex | |- ( dist ` ndx ) e. _V |
|
| 41 | fvex | |- ( MetOpen ` ( abs o. - ) ) e. _V |
|
| 42 | letsr | |- <_ e. TosetRel |
|
| 43 | 42 | elexi | |- <_ e. _V |
| 44 | absf | |- abs : CC --> RR |
|
| 45 | fex | |- ( ( abs : CC --> RR /\ CC e. _V ) -> abs e. _V ) |
|
| 46 | 44 7 45 | mp2an | |- abs e. _V |
| 47 | subf | |- - : ( CC X. CC ) --> CC |
|
| 48 | 7 7 | xpex | |- ( CC X. CC ) e. _V |
| 49 | fex | |- ( ( - : ( CC X. CC ) --> CC /\ ( CC X. CC ) e. _V ) -> - e. _V ) |
|
| 50 | 47 48 49 | mp2an | |- - e. _V |
| 51 | 46 50 | coex | |- ( abs o. - ) e. _V |
| 52 | 38 39 40 41 43 51 | funtp | |- ( ( ( TopSet ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) -> Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) |
| 53 | 33 35 37 52 | mp3an | |- Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
| 54 | fvex | |- ( UnifSet ` ndx ) e. _V |
|
| 55 | fvex | |- ( metUnif ` ( abs o. - ) ) e. _V |
|
| 56 | 54 55 | funsn | |- Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } |
| 57 | 53 56 | pm3.2i | |- ( Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
| 58 | 41 43 51 | dmtpop | |- dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } = { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } |
| 59 | 55 | dmsnop | |- dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } = { ( UnifSet ` ndx ) } |
| 60 | 58 59 | ineq12i | |- ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
| 61 | slotsdifunifndx | |- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
|
| 62 | unifndxntsetndx | |- ( UnifSet ` ndx ) =/= ( TopSet ` ndx ) |
|
| 63 | 62 | necomi | |- ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) |
| 64 | 63 | a1i | |- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) ) |
| 65 | 64 | anim1i | |- ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) ) |
| 66 | 3anass | |- ( ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) <-> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) ) |
|
| 67 | 65 66 | sylibr | |- ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
| 68 | 61 67 | ax-mp | |- ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) |
| 69 | disjtpsn | |- ( ( ( TopSet ` ndx ) =/= ( UnifSet ` ndx ) /\ ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
|
| 70 | 68 69 | ax-mp | |- ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
| 71 | 60 70 | eqtri | |- ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
| 72 | funun | |- ( ( ( Fun { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } /\ Fun { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) /\ ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) -> Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 73 | 57 71 72 | mp2an | |- Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
| 74 | 31 73 | pm3.2i | |- ( Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) /\ Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 75 | dmun | |- dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) = ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. dom { <. ( *r ` ndx ) , * >. } ) |
|
| 76 | dmun | |- dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
|
| 77 | 75 76 | ineq12i | |- ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 78 | 18 58 | ineq12i | |- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) |
| 79 | tsetndxnbasendx | |- ( TopSet ` ndx ) =/= ( Base ` ndx ) |
|
| 80 | 79 | necomi | |- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
| 81 | tsetndxnplusgndx | |- ( TopSet ` ndx ) =/= ( +g ` ndx ) |
|
| 82 | 81 | necomi | |- ( +g ` ndx ) =/= ( TopSet ` ndx ) |
| 83 | tsetndxnmulrndx | |- ( TopSet ` ndx ) =/= ( .r ` ndx ) |
|
| 84 | 83 | necomi | |- ( .r ` ndx ) =/= ( TopSet ` ndx ) |
| 85 | 80 82 84 | 3pm3.2i | |- ( ( Base ` ndx ) =/= ( TopSet ` ndx ) /\ ( +g ` ndx ) =/= ( TopSet ` ndx ) /\ ( .r ` ndx ) =/= ( TopSet ` ndx ) ) |
| 86 | plendxnbasendx | |- ( le ` ndx ) =/= ( Base ` ndx ) |
|
| 87 | 86 | necomi | |- ( Base ` ndx ) =/= ( le ` ndx ) |
| 88 | plendxnplusgndx | |- ( le ` ndx ) =/= ( +g ` ndx ) |
|
| 89 | 88 | necomi | |- ( +g ` ndx ) =/= ( le ` ndx ) |
| 90 | plendxnmulrndx | |- ( le ` ndx ) =/= ( .r ` ndx ) |
|
| 91 | 90 | necomi | |- ( .r ` ndx ) =/= ( le ` ndx ) |
| 92 | 87 89 91 | 3pm3.2i | |- ( ( Base ` ndx ) =/= ( le ` ndx ) /\ ( +g ` ndx ) =/= ( le ` ndx ) /\ ( .r ` ndx ) =/= ( le ` ndx ) ) |
| 93 | dsndxnbasendx | |- ( dist ` ndx ) =/= ( Base ` ndx ) |
|
| 94 | 93 | necomi | |- ( Base ` ndx ) =/= ( dist ` ndx ) |
| 95 | dsndxnplusgndx | |- ( dist ` ndx ) =/= ( +g ` ndx ) |
|
| 96 | 95 | necomi | |- ( +g ` ndx ) =/= ( dist ` ndx ) |
| 97 | dsndxnmulrndx | |- ( dist ` ndx ) =/= ( .r ` ndx ) |
|
| 98 | 97 | necomi | |- ( .r ` ndx ) =/= ( dist ` ndx ) |
| 99 | 94 96 98 | 3pm3.2i | |- ( ( Base ` ndx ) =/= ( dist ` ndx ) /\ ( +g ` ndx ) =/= ( dist ` ndx ) /\ ( .r ` ndx ) =/= ( dist ` ndx ) ) |
| 100 | disjtp2 | |- ( ( ( ( Base ` ndx ) =/= ( TopSet ` ndx ) /\ ( +g ` ndx ) =/= ( TopSet ` ndx ) /\ ( .r ` ndx ) =/= ( TopSet ` ndx ) ) /\ ( ( Base ` ndx ) =/= ( le ` ndx ) /\ ( +g ` ndx ) =/= ( le ` ndx ) /\ ( .r ` ndx ) =/= ( le ` ndx ) ) /\ ( ( Base ` ndx ) =/= ( dist ` ndx ) /\ ( +g ` ndx ) =/= ( dist ` ndx ) /\ ( .r ` ndx ) =/= ( dist ` ndx ) ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) ) |
|
| 101 | 85 92 99 100 | mp3an | |- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) |
| 102 | 78 101 | eqtri | |- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) |
| 103 | 18 59 | ineq12i | |- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
| 104 | unifndxnbasendx | |- ( UnifSet ` ndx ) =/= ( Base ` ndx ) |
|
| 105 | 104 | necomi | |- ( Base ` ndx ) =/= ( UnifSet ` ndx ) |
| 106 | 105 | a1i | |- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( Base ` ndx ) =/= ( UnifSet ` ndx ) ) |
| 107 | 3simpa | |- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
|
| 108 | 3anass | |- ( ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) <-> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) ) |
|
| 109 | 106 107 108 | sylanbrc | |- ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
| 110 | 109 | adantr | |- ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) ) |
| 111 | 61 110 | ax-mp | |- ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) |
| 112 | disjtpsn | |- ( ( ( Base ` ndx ) =/= ( UnifSet ` ndx ) /\ ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) ) -> ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
|
| 113 | 111 112 | ax-mp | |- ( { ( Base ` ndx ) , ( +g ` ndx ) , ( .r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
| 114 | 103 113 | eqtri | |- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
| 115 | 102 114 | pm3.2i | |- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) |
| 116 | undisj2 | |- ( ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) <-> ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
|
| 117 | 115 116 | mpbi | |- ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
| 118 | 19 58 | ineq12i | |- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) |
| 119 | tsetndxnstarvndx | |- ( TopSet ` ndx ) =/= ( *r ` ndx ) |
|
| 120 | necom | |- ( ( *r ` ndx ) =/= ( le ` ndx ) <-> ( le ` ndx ) =/= ( *r ` ndx ) ) |
|
| 121 | 120 | biimpi | |- ( ( *r ` ndx ) =/= ( le ` ndx ) -> ( le ` ndx ) =/= ( *r ` ndx ) ) |
| 122 | 121 | adantr | |- ( ( ( *r ` ndx ) =/= ( le ` ndx ) /\ ( TopSet ` ndx ) =/= ( le ` ndx ) ) -> ( le ` ndx ) =/= ( *r ` ndx ) ) |
| 123 | 32 122 | ax-mp | |- ( le ` ndx ) =/= ( *r ` ndx ) |
| 124 | necom | |- ( ( *r ` ndx ) =/= ( dist ` ndx ) <-> ( dist ` ndx ) =/= ( *r ` ndx ) ) |
|
| 125 | 124 | biimpi | |- ( ( *r ` ndx ) =/= ( dist ` ndx ) -> ( dist ` ndx ) =/= ( *r ` ndx ) ) |
| 126 | 125 | adantr | |- ( ( ( *r ` ndx ) =/= ( dist ` ndx ) /\ ( le ` ndx ) =/= ( dist ` ndx ) ) -> ( dist ` ndx ) =/= ( *r ` ndx ) ) |
| 127 | 36 126 | ax-mp | |- ( dist ` ndx ) =/= ( *r ` ndx ) |
| 128 | disjtpsn | |- ( ( ( TopSet ` ndx ) =/= ( *r ` ndx ) /\ ( le ` ndx ) =/= ( *r ` ndx ) /\ ( dist ` ndx ) =/= ( *r ` ndx ) ) -> ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) ) |
|
| 129 | 119 123 127 128 | mp3an | |- ( { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } i^i { ( *r ` ndx ) } ) = (/) |
| 130 | 129 | ineqcomi | |- ( { ( *r ` ndx ) } i^i { ( TopSet ` ndx ) , ( le ` ndx ) , ( dist ` ndx ) } ) = (/) |
| 131 | 118 130 | eqtri | |- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) |
| 132 | 19 59 | ineq12i | |- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) |
| 133 | simpl3 | |- ( ( ( ( +g ` ndx ) =/= ( UnifSet ` ndx ) /\ ( .r ` ndx ) =/= ( UnifSet ` ndx ) /\ ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) /\ ( ( le ` ndx ) =/= ( UnifSet ` ndx ) /\ ( dist ` ndx ) =/= ( UnifSet ` ndx ) ) ) -> ( *r ` ndx ) =/= ( UnifSet ` ndx ) ) |
|
| 134 | 61 133 | ax-mp | |- ( *r ` ndx ) =/= ( UnifSet ` ndx ) |
| 135 | disjsn2 | |- ( ( *r ` ndx ) =/= ( UnifSet ` ndx ) -> ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) ) |
|
| 136 | 134 135 | ax-mp | |- ( { ( *r ` ndx ) } i^i { ( UnifSet ` ndx ) } ) = (/) |
| 137 | 132 136 | eqtri | |- ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) |
| 138 | 131 137 | pm3.2i | |- ( ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) |
| 139 | undisj2 | |- ( ( ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) = (/) ) <-> ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
|
| 140 | 138 139 | mpbi | |- ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
| 141 | 117 140 | pm3.2i | |- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
| 142 | undisj1 | |- ( ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) /\ ( dom { <. ( *r ` ndx ) , * >. } i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) <-> ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) |
|
| 143 | 141 142 | mpbi | |- ( ( dom { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. dom { <. ( *r ` ndx ) , * >. } ) i^i ( dom { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. dom { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
| 144 | 77 143 | eqtri | |- ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) |
| 145 | funun | |- ( ( ( Fun ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) /\ Fun ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) /\ ( dom ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) i^i dom ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) = (/) ) -> Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
|
| 146 | 74 144 145 | mp2an | |- Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 147 | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
|
| 148 | 147 | funeqi | |- ( Fun CCfld <-> Fun ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( u e. CC , v e. CC |-> ( u + v ) ) >. , <. ( .r ` ndx ) , ( u e. CC , v e. CC |-> ( u x. v ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) ) |
| 149 | 146 148 | mpbir | |- Fun CCfld |