This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The index of the slot for the uniform set is not the index of other slots. Formerly part of proof for cnfldfunALT . (Contributed by AV, 10-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | slotsdifunifndx | ⊢ ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | ⊢ 2 ∈ ℝ | |
| 2 | 1nn | ⊢ 1 ∈ ℕ | |
| 3 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 4 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 5 | 2lt10 | ⊢ 2 < ; 1 0 | |
| 6 | 2 3 4 5 | declti | ⊢ 2 < ; 1 3 |
| 7 | 1 6 | ltneii | ⊢ 2 ≠ ; 1 3 |
| 8 | plusgndx | ⊢ ( +g ‘ ndx ) = 2 | |
| 9 | unifndx | ⊢ ( UnifSet ‘ ndx ) = ; 1 3 | |
| 10 | 8 9 | neeq12i | ⊢ ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ 2 ≠ ; 1 3 ) |
| 11 | 7 10 | mpbir | ⊢ ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 12 | 3re | ⊢ 3 ∈ ℝ | |
| 13 | 3lt10 | ⊢ 3 < ; 1 0 | |
| 14 | 2 3 3 13 | declti | ⊢ 3 < ; 1 3 |
| 15 | 12 14 | ltneii | ⊢ 3 ≠ ; 1 3 |
| 16 | mulrndx | ⊢ ( .r ‘ ndx ) = 3 | |
| 17 | 16 9 | neeq12i | ⊢ ( ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ 3 ≠ ; 1 3 ) |
| 18 | 15 17 | mpbir | ⊢ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 19 | 4re | ⊢ 4 ∈ ℝ | |
| 20 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 21 | 4lt10 | ⊢ 4 < ; 1 0 | |
| 22 | 2 3 20 21 | declti | ⊢ 4 < ; 1 3 |
| 23 | 19 22 | ltneii | ⊢ 4 ≠ ; 1 3 |
| 24 | starvndx | ⊢ ( *𝑟 ‘ ndx ) = 4 | |
| 25 | 24 9 | neeq12i | ⊢ ( ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ 4 ≠ ; 1 3 ) |
| 26 | 23 25 | mpbir | ⊢ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 27 | 11 18 26 | 3pm3.2i | ⊢ ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) |
| 28 | 10re | ⊢ ; 1 0 ∈ ℝ | |
| 29 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 30 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 31 | 3nn | ⊢ 3 ∈ ℕ | |
| 32 | 3pos | ⊢ 0 < 3 | |
| 33 | 29 30 31 32 | declt | ⊢ ; 1 0 < ; 1 3 |
| 34 | 28 33 | ltneii | ⊢ ; 1 0 ≠ ; 1 3 |
| 35 | plendx | ⊢ ( le ‘ ndx ) = ; 1 0 | |
| 36 | 35 9 | neeq12i | ⊢ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ ; 1 0 ≠ ; 1 3 ) |
| 37 | 34 36 | mpbir | ⊢ ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 38 | 2nn | ⊢ 2 ∈ ℕ | |
| 39 | 29 38 | decnncl | ⊢ ; 1 2 ∈ ℕ |
| 40 | 39 | nnrei | ⊢ ; 1 2 ∈ ℝ |
| 41 | 2lt3 | ⊢ 2 < 3 | |
| 42 | 29 4 31 41 | declt | ⊢ ; 1 2 < ; 1 3 |
| 43 | 40 42 | ltneii | ⊢ ; 1 2 ≠ ; 1 3 |
| 44 | dsndx | ⊢ ( dist ‘ ndx ) = ; 1 2 | |
| 45 | 44 9 | neeq12i | ⊢ ( ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ↔ ; 1 2 ≠ ; 1 3 ) |
| 46 | 43 45 | mpbir | ⊢ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) |
| 47 | 37 46 | pm3.2i | ⊢ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) |
| 48 | 27 47 | pm3.2i | ⊢ ( ( ( +g ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( .r ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( *𝑟 ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ∧ ( ( le ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ∧ ( dist ‘ ndx ) ≠ ( UnifSet ‘ ndx ) ) ) |