This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Proof shortened by AV, 2-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvrval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvrval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| dvrval.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| dvrval.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | ||
| dvrval.d | ⊢ / = ( /r ‘ 𝑅 ) | ||
| Assertion | dvrfval | ⊢ / = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvrval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | dvrval.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 4 | dvrval.i | ⊢ 𝐼 = ( invr ‘ 𝑅 ) | |
| 5 | dvrval.d | ⊢ / = ( /r ‘ 𝑅 ) | |
| 6 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = ( Unit ‘ 𝑅 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Unit ‘ 𝑟 ) = 𝑈 ) |
| 10 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 12 | eqidd | ⊢ ( 𝑟 = 𝑅 → 𝑥 = 𝑥 ) | |
| 13 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( invr ‘ 𝑟 ) = ( invr ‘ 𝑅 ) ) | |
| 14 | 13 4 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( invr ‘ 𝑟 ) = 𝐼 ) |
| 15 | 14 | fveq1d | ⊢ ( 𝑟 = 𝑅 → ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) ) |
| 16 | 11 12 15 | oveq123d | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) = ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) |
| 17 | 7 9 16 | mpoeq123dv | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 18 | df-dvr | ⊢ /r = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑟 ) , 𝑦 ∈ ( Unit ‘ 𝑟 ) ↦ ( 𝑥 ( .r ‘ 𝑟 ) ( ( invr ‘ 𝑟 ) ‘ 𝑦 ) ) ) ) | |
| 19 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 20 | 3 | fvexi | ⊢ 𝑈 ∈ V |
| 21 | 19 20 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) ∈ V |
| 22 | 17 18 21 | fvmpt | ⊢ ( 𝑅 ∈ V → ( /r ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 23 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( /r ‘ 𝑅 ) = ∅ ) | |
| 24 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) | |
| 25 | 1 24 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝐵 = ∅ ) |
| 26 | 25 | orcd | ⊢ ( ¬ 𝑅 ∈ V → ( 𝐵 = ∅ ∨ 𝑈 = ∅ ) ) |
| 27 | 0mpo0 | ⊢ ( ( 𝐵 = ∅ ∨ 𝑈 = ∅ ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) = ∅ ) | |
| 28 | 26 27 | syl | ⊢ ( ¬ 𝑅 ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) = ∅ ) |
| 29 | 23 28 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( /r ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 30 | 22 29 | pm2.61i | ⊢ ( /r ‘ 𝑅 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) |
| 31 | 5 30 | eqtri | ⊢ / = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 · ( 𝐼 ‘ 𝑦 ) ) ) |