This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "the class F is a continuous function from topology J to topology K ". Definition of continuous function in Munkres p. 102. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| iscn.2 | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | iscn2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscn.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | iscn.2 | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | df-cn | ⊢ Cn = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( ∪ 𝑘 ↑m ∪ 𝑗 ) ∣ ∀ 𝑦 ∈ 𝑘 ( ◡ 𝑓 “ 𝑦 ) ∈ 𝑗 } ) | |
| 4 | 3 | elmpocl | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ) |
| 5 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 7 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) | |
| 8 | 5 6 7 | syl2anb | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 9 | 4 8 | biadanii | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |