This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cncmet.1 | ⊢ 𝐷 = ( abs ∘ − ) | |
| Assertion | cncmet | ⊢ 𝐷 ∈ ( CMet ‘ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncmet.1 | ⊢ 𝐷 = ( abs ∘ − ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 4 | 1 | fveq2i | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 5 | 3 4 | eqtr4i | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ 𝐷 ) |
| 6 | cnmet | ⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) | |
| 7 | 1 6 | eqeltri | ⊢ 𝐷 ∈ ( Met ‘ ℂ ) |
| 8 | 7 | a1i | ⊢ ( ⊤ → 𝐷 ∈ ( Met ‘ ℂ ) ) |
| 9 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 10 | 9 | a1i | ⊢ ( ⊤ → 1 ∈ ℝ+ ) |
| 11 | 2 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 12 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ ℂ ) → 𝐷 ∈ ( ∞Met ‘ ℂ ) ) | |
| 13 | 7 12 | ax-mp | ⊢ 𝐷 ∈ ( ∞Met ‘ ℂ ) |
| 14 | 1xr | ⊢ 1 ∈ ℝ* | |
| 15 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℂ ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ℂ ) | |
| 16 | 13 14 15 | mp3an13 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ℂ ) |
| 17 | unicntop | ⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) | |
| 18 | 17 | clscld | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ℂ ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 19 | 11 16 18 | sylancr | ⊢ ( 𝑥 ∈ ℂ → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 20 | abscl | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) | |
| 21 | peano2re | ⊢ ( ( abs ‘ 𝑥 ) ∈ ℝ → ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
| 23 | df-rab | ⊢ { 𝑦 ∈ ℂ ∣ ( 𝑥 𝐷 𝑦 ) ≤ 1 } = { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } | |
| 24 | 23 | eqcomi | ⊢ { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } = { 𝑦 ∈ ℂ ∣ ( 𝑥 𝐷 𝑦 ) ≤ 1 } |
| 25 | 5 24 | blcls | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ ℂ ) ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } ) |
| 26 | 13 14 25 | mp3an13 | ⊢ ( 𝑥 ∈ ℂ → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } ) |
| 27 | abscl | ⊢ ( 𝑦 ∈ ℂ → ( abs ‘ 𝑦 ) ∈ ℝ ) | |
| 28 | 27 | ad2antrl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ 𝑦 ) ∈ ℝ ) |
| 29 | 20 | adantr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ 𝑥 ) ∈ ℝ ) |
| 30 | 28 29 | resubcld | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( ( abs ‘ 𝑦 ) − ( abs ‘ 𝑥 ) ) ∈ ℝ ) |
| 31 | simpl | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) → 𝑦 ∈ ℂ ) | |
| 32 | id | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) | |
| 33 | subcl | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) | |
| 34 | 31 32 33 | syl2anr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( 𝑦 − 𝑥 ) ∈ ℂ ) |
| 35 | 34 | abscld | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) ∈ ℝ ) |
| 36 | 1red | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → 1 ∈ ℝ ) | |
| 37 | simprl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → 𝑦 ∈ ℂ ) | |
| 38 | simpl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → 𝑥 ∈ ℂ ) | |
| 39 | 37 38 | abs2difd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( ( abs ‘ 𝑦 ) − ( abs ‘ 𝑥 ) ) ≤ ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 40 | 1 | cnmetdval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 𝐷 𝑦 ) = ( abs ‘ ( 𝑥 − 𝑦 ) ) ) |
| 41 | abssub | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 − 𝑦 ) ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) | |
| 42 | 40 41 | eqtrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑥 𝐷 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 43 | 42 | adantrr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( 𝑥 𝐷 𝑦 ) = ( abs ‘ ( 𝑦 − 𝑥 ) ) ) |
| 44 | simprr | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( 𝑥 𝐷 𝑦 ) ≤ 1 ) | |
| 45 | 43 44 | eqbrtrrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( 𝑦 − 𝑥 ) ) ≤ 1 ) |
| 46 | 30 35 36 39 45 | letrd | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( ( abs ‘ 𝑦 ) − ( abs ‘ 𝑥 ) ) ≤ 1 ) |
| 47 | 28 29 36 | lesubadd2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( ( ( abs ‘ 𝑦 ) − ( abs ‘ 𝑥 ) ) ≤ 1 ↔ ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) ) |
| 48 | 46 47 | mpbid | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) ) → ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) |
| 49 | 48 | ex | ⊢ ( 𝑥 ∈ ℂ → ( ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) → ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) ) |
| 50 | 49 | ss2abdv | ⊢ ( 𝑥 ∈ ℂ → { 𝑦 ∣ ( 𝑦 ∈ ℂ ∧ ( 𝑥 𝐷 𝑦 ) ≤ 1 ) } ⊆ { 𝑦 ∣ ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) } ) |
| 51 | 26 50 | sstrd | ⊢ ( 𝑥 ∈ ℂ → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ { 𝑦 ∣ ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) } ) |
| 52 | ssabral | ⊢ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ { 𝑦 ∣ ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) } ↔ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) | |
| 53 | 51 52 | sylib | ⊢ ( 𝑥 ∈ ℂ → ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) |
| 54 | brralrspcev | ⊢ ( ( ( ( abs ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ ( ( abs ‘ 𝑥 ) + 1 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ 𝑟 ) | |
| 55 | 22 53 54 | syl2anc | ⊢ ( 𝑥 ∈ ℂ → ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ 𝑟 ) |
| 56 | 17 | clsss3 | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ⊆ ℂ ) → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ ℂ ) |
| 57 | 11 16 56 | sylancr | ⊢ ( 𝑥 ∈ ℂ → ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ ℂ ) |
| 58 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) | |
| 59 | 2 58 | cnheibor | ⊢ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ⊆ ℂ → ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ↔ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ 𝑟 ) ) ) |
| 60 | 57 59 | syl | ⊢ ( 𝑥 ∈ ℂ → ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ↔ ( ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ( abs ‘ 𝑦 ) ≤ 𝑟 ) ) ) |
| 61 | 19 55 60 | mpbir2and | ⊢ ( 𝑥 ∈ ℂ → ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ) |
| 62 | 61 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( cls ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( 𝑥 ( ball ‘ 𝐷 ) 1 ) ) ) ∈ Comp ) |
| 63 | 5 8 10 62 | relcmpcmet | ⊢ ( ⊤ → 𝐷 ∈ ( CMet ‘ ℂ ) ) |
| 64 | 63 | mptru | ⊢ 𝐷 ∈ ( CMet ‘ ℂ ) |