This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of an open ball in a metric space is contained in the corresponding closed ball. (Equality need not hold; for example, with the discrete metric, the closed ball of radius 1 is the whole space, but the open ball of radius 1 is just a point, whose closure is also a point.) (Contributed by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| blcld.3 | ⊢ 𝑆 = { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } | ||
| Assertion | blcls | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopni.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | blcld.3 | ⊢ 𝑆 = { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } | |
| 3 | 1 2 | blcld | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |
| 4 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 ) | |
| 5 | elbl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑧 ) < 𝑅 ) ) ) | |
| 6 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑧 ) ∈ ℝ* ) | |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑧 ) ∈ ℝ* ) |
| 8 | 7 | 3adantl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑧 ) ∈ ℝ* ) |
| 9 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑧 ∈ 𝑋 ) → 𝑅 ∈ ℝ* ) | |
| 10 | xrltle | ⊢ ( ( ( 𝑃 𝐷 𝑧 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑃 𝐷 𝑧 ) < 𝑅 → ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ) ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑧 ) < 𝑅 → ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ) ) |
| 12 | 11 | expimpd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑧 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑧 ) < 𝑅 ) → ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ) ) |
| 13 | 5 12 | sylbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) → ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ) ) |
| 14 | 13 | ralrimiv | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ∀ 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ) |
| 15 | ssrab | ⊢ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ↔ ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑋 ∧ ∀ 𝑧 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 ) ) | |
| 16 | 4 14 15 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ { 𝑧 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑧 ) ≤ 𝑅 } ) |
| 17 | 16 2 | sseqtrrdi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑆 ) |
| 18 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 19 | 18 | clsss2 | ⊢ ( ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ 𝑆 ) |
| 20 | 3 17 19 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ 𝑆 ) |