This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers are a complete metric space. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recmet | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 2 | 1 | recld2 | ⊢ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
| 3 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 4 | 3 | cncmet | ⊢ ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) |
| 5 | 1 | cnfldtopn | ⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
| 6 | 5 | cmetss | ⊢ ( ( abs ∘ − ) ∈ ( CMet ‘ ℂ ) → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) ) |
| 7 | 4 6 | ax-mp | ⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) ↔ ℝ ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 8 | 2 7 | mpbir | ⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( CMet ‘ ℝ ) |