This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018) (Revised by AV, 4-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ge2m1nn | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℕ0 ) | |
| 2 | 1red | ⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℝ ) | |
| 3 | 2re | ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
| 5 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 6 | 2 4 5 | 3jca | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
| 8 | simpr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 2 ≤ 𝑁 ) | |
| 9 | 1lt2 | ⊢ 1 < 2 | |
| 10 | 8 9 | jctil | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 1 < 2 ∧ 2 ≤ 𝑁 ) ) |
| 11 | ltleletr | ⊢ ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 1 < 2 ∧ 2 ≤ 𝑁 ) → 1 ≤ 𝑁 ) ) | |
| 12 | 7 10 11 | sylc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 1 ≤ 𝑁 ) |
| 13 | elnnnn0c | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) ) | |
| 14 | 1 12 13 | sylanbrc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 15 | nn1m1nn | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) ) |
| 17 | breq2 | ⊢ ( 𝑁 = 1 → ( 2 ≤ 𝑁 ↔ 2 ≤ 1 ) ) | |
| 18 | 1re | ⊢ 1 ∈ ℝ | |
| 19 | 18 3 | ltnlei | ⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
| 20 | pm2.21 | ⊢ ( ¬ 2 ≤ 1 → ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ ) ) | |
| 21 | 19 20 | sylbi | ⊢ ( 1 < 2 → ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ ) ) |
| 22 | 9 21 | ax-mp | ⊢ ( 2 ≤ 1 → ( 𝑁 − 1 ) ∈ ℕ ) |
| 23 | 17 22 | biimtrdi | ⊢ ( 𝑁 = 1 → ( 2 ≤ 𝑁 → ( 𝑁 − 1 ) ∈ ℕ ) ) |
| 24 | 23 | adantld | ⊢ ( 𝑁 = 1 → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) ) |
| 25 | ax-1 | ⊢ ( ( 𝑁 − 1 ) ∈ ℕ → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) ) | |
| 26 | 24 25 | jaoi | ⊢ ( ( 𝑁 = 1 ∨ ( 𝑁 − 1 ) ∈ ℕ ) → ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) ) |
| 27 | 16 26 | mpcom | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) |