This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climi.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climi.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climi.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| climi.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| climi.5 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | ||
| Assertion | climi | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climi.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climi.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climi.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | climi.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 5 | climi.5 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐴 ) | |
| 6 | breq2 | ⊢ ( 𝑥 = 𝐶 → ( ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) | |
| 7 | 6 | anbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) ) |
| 8 | 7 | rexralbidv | ⊢ ( 𝑥 = 𝐶 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) ) |
| 9 | climrel | ⊢ Rel ⇝ | |
| 10 | 9 | brrelex1i | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐹 ∈ V ) |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 12 | 1 2 11 4 | clim2 | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 13 | 5 12 | mpbid | ⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 14 | 13 | simprd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 15 | 8 14 3 | rspcdva | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝐶 ) ) |