This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate: The limit of complex number sequence F is A , or F converges to A . This means that for any real x , no matter how small, there always exists an integer j such that the absolute difference of any later complex number in the sequence and the limit is less than x . (Contributed by NM, 28-Aug-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| clim.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| Assertion | clim | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | clim.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 3 | climrel | ⊢ Rel ⇝ | |
| 4 | 3 | brrelex2i | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ V ) |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ V ) ) |
| 6 | elex | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ V ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → 𝐴 ∈ V ) |
| 8 | 7 | a1i | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → 𝐴 ∈ V ) ) |
| 9 | simpr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → 𝑦 = 𝐴 ) | |
| 10 | 9 | eleq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( 𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ ) ) |
| 11 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 13 | 12 | eleq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) ) |
| 14 | oveq12 | ⊢ ( ( ( 𝑓 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ∧ 𝑦 = 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) | |
| 15 | 11 14 | sylan | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) = ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) ) |
| 17 | 16 | breq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 18 | 13 17 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 22 | 10 21 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑦 = 𝐴 ) → ( ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 23 | df-clim | ⊢ ⇝ = { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) } | |
| 24 | 22 23 | brabga | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐴 ∈ V ) → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 25 | 24 | ex | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐴 ∈ V → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) ) |
| 26 | 1 25 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ V → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) ) |
| 27 | 5 8 26 | pm5.21ndd | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 28 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ ℤ ) | |
| 29 | 2 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 30 | 2 | fvoveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 31 | 30 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) |
| 32 | 29 31 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 33 | 28 32 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 34 | 33 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 35 | 34 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 36 | 35 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) |
| 37 | 36 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 38 | 27 37 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐵 ∈ ℂ ∧ ( abs ‘ ( 𝐵 − 𝐴 ) ) < 𝑥 ) ) ) ) |