This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003) (Proof shortened by Mario Carneiro, 10-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtoclgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| vtoclgf.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| vtoclgf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtoclgf.4 | ⊢ 𝜑 | ||
| Assertion | vtoclgf | ⊢ ( 𝐴 ∈ 𝑉 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclgf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | vtoclgf.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | vtoclgf.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | vtoclgf.4 | ⊢ 𝜑 | |
| 5 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 6 | 1 | issetf | ⊢ ( 𝐴 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐴 ) |
| 7 | 4 3 | mpbii | ⊢ ( 𝑥 = 𝐴 → 𝜓 ) |
| 8 | 2 7 | exlimi | ⊢ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) |
| 9 | 6 8 | sylbi | ⊢ ( 𝐴 ∈ V → 𝜓 ) |
| 10 | 5 9 | syl | ⊢ ( 𝐴 ∈ 𝑉 → 𝜓 ) |