This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of climrec using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climrecf.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| climrecf.2 | ⊢ Ⅎ 𝑘 𝐺 | ||
| climrecf.3 | ⊢ Ⅎ 𝑘 𝐻 | ||
| climrecf.4 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climrecf.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climrecf.6 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) | ||
| climrecf.7 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| climrecf.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) | ||
| climrecf.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) | ||
| climrecf.10 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | ||
| Assertion | climrecf | ⊢ ( 𝜑 → 𝐻 ⇝ ( 1 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrecf.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | climrecf.2 | ⊢ Ⅎ 𝑘 𝐺 | |
| 3 | climrecf.3 | ⊢ Ⅎ 𝑘 𝐻 | |
| 4 | climrecf.4 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 5 | climrecf.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 6 | climrecf.6 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) | |
| 7 | climrecf.7 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 8 | climrecf.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) | |
| 9 | climrecf.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) | |
| 10 | climrecf.10 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | |
| 11 | nfv | ⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 | |
| 12 | 1 11 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
| 13 | nfcv | ⊢ Ⅎ 𝑘 𝑗 | |
| 14 | 2 13 | nffv | ⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) |
| 15 | 14 | nfel1 | ⊢ Ⅎ 𝑘 ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) |
| 16 | 12 15 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 17 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) | |
| 18 | 17 | anbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
| 19 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑗 ) ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
| 21 | 18 20 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) ) ) |
| 22 | 16 21 8 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 23 | 3 13 | nffv | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) |
| 24 | nfcv | ⊢ Ⅎ 𝑘 1 | |
| 25 | nfcv | ⊢ Ⅎ 𝑘 / | |
| 26 | 24 25 14 | nfov | ⊢ Ⅎ 𝑘 ( 1 / ( 𝐺 ‘ 𝑗 ) ) |
| 27 | 23 26 | nfeq | ⊢ Ⅎ 𝑘 ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) |
| 28 | 12 27 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) |
| 29 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑗 ) ) | |
| 30 | 19 | oveq2d | ⊢ ( 𝑘 = 𝑗 → ( 1 / ( 𝐺 ‘ 𝑘 ) ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) |
| 31 | 29 30 | eqeq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐻 ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) ) |
| 32 | 18 31 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) ) ) |
| 33 | 28 32 9 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( 1 / ( 𝐺 ‘ 𝑗 ) ) ) |
| 34 | 4 5 6 7 22 33 10 | climrec | ⊢ ( 𝜑 → 𝐻 ⇝ ( 1 / 𝐴 ) ) |