This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subsequence index I has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climsuselem1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climsuselem1.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climsuselem1.3 | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ 𝑍 ) | ||
| climsuselem1.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) | ||
| Assertion | climsuselem1 | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climsuselem1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climsuselem1.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climsuselem1.3 | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ 𝑍 ) | |
| 4 | climsuselem1.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) | |
| 5 | 1 | eleq2i | ⊢ ( 𝐾 ∈ 𝑍 ↔ 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 6 | 5 | biimpi | ⊢ ( 𝐾 ∈ 𝑍 → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | simpl | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → 𝜑 ) | |
| 9 | fveq2 | ⊢ ( 𝑗 = 𝑀 → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑀 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑗 = 𝑀 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑀 ) ) | |
| 11 | 9 10 | eleq12d | ⊢ ( 𝑗 = 𝑀 → ( ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝐼 ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑗 = 𝑀 → ( ( 𝜑 → ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑘 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑘 ) ) | |
| 15 | 13 14 | eleq12d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 → ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ) |
| 17 | fveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) | |
| 18 | fveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) | |
| 19 | 17 18 | eleq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) ) |
| 20 | 19 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝜑 → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑗 = 𝐾 → ( 𝐼 ‘ 𝑗 ) = ( 𝐼 ‘ 𝐾 ) ) | |
| 22 | fveq2 | ⊢ ( 𝑗 = 𝐾 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝐾 ) ) | |
| 23 | 21 22 | eleq12d | ⊢ ( 𝑗 = 𝐾 → ( ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ↔ ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑗 = 𝐾 → ( ( 𝜑 → ( 𝐼 ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ↔ ( 𝜑 → ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) ) ) |
| 25 | 3 1 | eleqtrdi | ⊢ ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 26 | 25 | a1i | ⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ( 𝐼 ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 27 | simpr | ⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → 𝜑 ) | |
| 28 | simpll | ⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 29 | simplr | ⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) | |
| 30 | 27 29 | mpd | ⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 31 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 32 | 31 | 3ad2ant2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℤ ) |
| 33 | 32 | peano2zd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℤ ) |
| 34 | 33 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 35 | eluzelre | ⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) → ( 𝐼 ‘ 𝑘 ) ∈ ℝ ) | |
| 36 | 35 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ 𝑘 ) ∈ ℝ ) |
| 37 | 1red | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → 1 ∈ ℝ ) | |
| 38 | 36 37 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐼 ‘ 𝑘 ) + 1 ) ∈ ℝ ) |
| 39 | 1 | eqimss2i | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 |
| 40 | 39 | a1i | ⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ⊆ 𝑍 ) |
| 41 | 40 | sseld | ⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ 𝑍 ) ) |
| 42 | 41 | imdistani | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ) |
| 43 | 42 4 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) |
| 44 | 43 | 3adant3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) ) |
| 45 | eluzelz | ⊢ ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) | |
| 46 | 44 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
| 47 | 46 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 48 | 32 | zred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 49 | eluzle | ⊢ ( ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) → 𝑘 ≤ ( 𝐼 ‘ 𝑘 ) ) | |
| 50 | 49 | 3ad2ant3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ≤ ( 𝐼 ‘ 𝑘 ) ) |
| 51 | 48 36 37 50 | leadd1dd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ≤ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) |
| 52 | eluzle | ⊢ ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( ( 𝐼 ‘ 𝑘 ) + 1 ) ) → ( ( 𝐼 ‘ 𝑘 ) + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) | |
| 53 | 44 52 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐼 ‘ 𝑘 ) + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) |
| 54 | 34 38 47 51 53 | letrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) |
| 55 | eluz | ⊢ ( ( ( 𝑘 + 1 ) ∈ ℤ ∧ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) → ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑘 + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 56 | 33 46 55 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ↔ ( 𝑘 + 1 ) ≤ ( 𝐼 ‘ ( 𝑘 + 1 ) ) ) ) |
| 57 | 54 56 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
| 58 | 27 28 30 57 | syl3anc | ⊢ ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) ) ∧ 𝜑 ) → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) |
| 59 | 58 | exp31 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ( 𝐼 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝜑 → ( 𝐼 ‘ ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 60 | 12 16 20 24 26 59 | uzind4 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 61 | 7 8 60 | sylc | ⊢ ( ( 𝜑 ∧ 𝐾 ∈ 𝑍 ) → ( 𝐼 ‘ 𝐾 ) ∈ ( ℤ≥ ‘ 𝐾 ) ) |