This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set A . (Contributed by NM, 24-Apr-2004) Avoid ax-11 . (Revised by BTernaryTau, 25-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cflem | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | ssid | ⊢ 𝑧 ⊆ 𝑧 | |
| 3 | sseq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑧 ) ) | |
| 4 | 3 | rspcev | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ⊆ 𝑧 ) → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
| 5 | 2 4 | mpan2 | ⊢ ( 𝑧 ∈ 𝐴 → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
| 6 | 5 | rgen | ⊢ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 |
| 7 | sseq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 8 | rexeq | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) | |
| 9 | 8 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) ) |
| 11 | 10 | spcegv | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 12 | 1 6 11 | mp2ani | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) |
| 13 | fvex | ⊢ ( card ‘ 𝑦 ) ∈ V | |
| 14 | 13 | isseti | ⊢ ∃ 𝑥 𝑥 = ( card ‘ 𝑦 ) |
| 15 | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( ∃ 𝑥 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) | |
| 16 | 14 15 | mpbiran | ⊢ ( ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) |
| 18 | fveq2 | ⊢ ( 𝑦 = 𝑣 → ( card ‘ 𝑦 ) = ( card ‘ 𝑣 ) ) | |
| 19 | 18 | eqeq2d | ⊢ ( 𝑦 = 𝑣 → ( 𝑥 = ( card ‘ 𝑦 ) ↔ 𝑥 = ( card ‘ 𝑣 ) ) ) |
| 20 | sseq1 | ⊢ ( 𝑦 = 𝑣 → ( 𝑦 ⊆ 𝐴 ↔ 𝑣 ⊆ 𝐴 ) ) | |
| 21 | rexeq | ⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤 ) ) | |
| 22 | 21 | ralbidv | ⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤 ) ) |
| 23 | 20 22 | anbi12d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ↔ ( 𝑣 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤 ) ) ) |
| 24 | 19 23 | anbi12d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( 𝑥 = ( card ‘ 𝑣 ) ∧ ( 𝑣 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑣 𝑧 ⊆ 𝑤 ) ) ) ) |
| 25 | 24 | excomimw | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 26 | 17 25 | sylbir | ⊢ ( ∃ 𝑦 ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 27 | 12 26 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |