This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cfcof , showing subset relation in one direction. (Contributed by Mario Carneiro, 9-Mar-2013) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfcoflem | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cff1 | ⊢ ( 𝐵 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) | |
| 2 | f1f | ⊢ ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 → 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) | |
| 3 | fco | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ) | |
| 4 | 3 | adantlr | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ) |
| 5 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 6 | ffvelcdm | ⊢ ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) | |
| 7 | ffn | ⊢ ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝑓 Fn 𝐵 ) | |
| 8 | smoword | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) | |
| 9 | 8 | biimpd | ⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 10 | 9 | exp32 | ⊢ ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
| 11 | 7 10 | sylan | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
| 12 | 6 11 | syl7 | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
| 13 | 12 | com23 | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
| 14 | 13 | expdimp | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑧 ∈ ( cf ‘ 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
| 15 | 14 | 3imp2 | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) |
| 16 | sstr2 | ⊢ ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) → 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) | |
| 17 | 15 16 | syl5com | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 18 | fvco3 | ⊢ ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) = ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) | |
| 19 | 18 | sseq2d | ⊢ ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ↔ 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 20 | 19 | adantll | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ↔ 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 21 | 20 | 3ad2antr1 | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ↔ 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 22 | 17 21 | sylibrd | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 23 | 22 | expcom | ⊢ ( ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
| 24 | 23 | 3expia | ⊢ ( ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
| 25 | 24 | com4t | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
| 26 | 25 | imp | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
| 27 | 26 | expcomd | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ ( cf ‘ 𝐵 ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
| 28 | 27 | imp31 | ⊢ ( ( ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 29 | 28 | reximdva | ⊢ ( ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 30 | 29 | exp31 | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( 𝑦 ∈ 𝐵 → ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
| 31 | 30 | com34 | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
| 32 | 31 | impcomd | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
| 33 | 32 | com23 | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
| 34 | 33 | rexlimdv | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 35 | 5 34 | syl5 | ⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 36 | 35 | expdimp | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 37 | 36 | ralimdv | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 38 | 37 | impr | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) |
| 39 | vex | ⊢ 𝑓 ∈ V | |
| 40 | vex | ⊢ 𝑔 ∈ V | |
| 41 | 39 40 | coex | ⊢ ( 𝑓 ∘ 𝑔 ) ∈ V |
| 42 | feq1 | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ↔ ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ) ) | |
| 43 | fveq1 | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ℎ ‘ 𝑧 ) = ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) | |
| 44 | 43 | sseq2d | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ↔ 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 45 | 44 | rexbidv | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 46 | 45 | ralbidv | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
| 47 | 42 46 | anbi12d | ⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ↔ ( ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
| 48 | 41 47 | spcev | ⊢ ( ( ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) |
| 49 | 4 38 48 | syl2an2r | ⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) |
| 50 | 49 | exp43 | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) ) |
| 51 | 50 | com24 | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) ) |
| 52 | 51 | 3impia | ⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) |
| 53 | 52 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) |
| 54 | 53 | com13 | ⊢ ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) |
| 55 | 2 54 | syl | ⊢ ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) |
| 56 | 55 | imp | ⊢ ( ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) |
| 57 | 56 | exlimiv | ⊢ ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) |
| 58 | 1 57 | syl | ⊢ ( 𝐵 ∈ On → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) |
| 59 | cfon | ⊢ ( cf ‘ 𝐵 ) ∈ On | |
| 60 | cfflb | ⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐵 ) ∈ On ) → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) | |
| 61 | 59 60 | mpan2 | ⊢ ( 𝐴 ∈ On → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) |
| 62 | 58 61 | sylan9r | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) |