This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exhibit a function G with the same convergence properties as the not-quite-function F . (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2clim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climmpt.2 | ⊢ 𝐺 = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | climmpt | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2clim.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climmpt.2 | ⊢ 𝐺 = ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) | |
| 3 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → 𝐹 ∈ 𝑉 ) | |
| 4 | fvex | ⊢ ( ℤ≥ ‘ 𝑀 ) ∈ V | |
| 5 | 1 4 | eqeltri | ⊢ 𝑍 ∈ V |
| 6 | 5 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ ( 𝐹 ‘ 𝑘 ) ) ∈ V |
| 7 | 2 6 | eqeltri | ⊢ 𝐺 ∈ V |
| 8 | 7 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 9 | simpl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → 𝑀 ∈ ℤ ) | |
| 10 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) | |
| 11 | fvex | ⊢ ( 𝐹 ‘ 𝑚 ) ∈ V | |
| 12 | 10 2 11 | fvmpt | ⊢ ( 𝑚 ∈ 𝑍 → ( 𝐺 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) |
| 13 | 12 | eqcomd | ⊢ ( 𝑚 ∈ 𝑍 → ( 𝐹 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑚 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑚 ) ) |
| 15 | 1 3 8 9 14 | climeq | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉 ) → ( 𝐹 ⇝ 𝐴 ↔ 𝐺 ⇝ 𝐴 ) ) |