This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcoppccl.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcoppccl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| catcoppccl.o | ⊢ 𝑂 = ( oppCat ‘ 𝑋 ) | ||
| catcoppccl.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| catcoppccl.2 | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | ||
| catcoppccl.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | catcoppccl | ⊢ ( 𝜑 → 𝑂 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcoppccl.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcoppccl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | catcoppccl.o | ⊢ 𝑂 = ( oppCat ‘ 𝑋 ) | |
| 4 | catcoppccl.1 | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 5 | catcoppccl.2 | ⊢ ( 𝜑 → ω ∈ 𝑈 ) | |
| 6 | catcoppccl.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝑋 ) = ( Hom ‘ 𝑋 ) | |
| 9 | eqid | ⊢ ( comp ‘ 𝑋 ) = ( comp ‘ 𝑋 ) | |
| 10 | 7 8 9 3 | oppcval | ⊢ ( 𝑋 ∈ 𝐵 → 𝑂 = ( ( 𝑋 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑋 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) 〉 ) ) |
| 11 | 6 10 | syl | ⊢ ( 𝜑 → 𝑂 = ( ( 𝑋 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑋 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) 〉 ) ) |
| 12 | 1 2 4 6 | catcbascl | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 13 | homid | ⊢ Hom = Slot ( Hom ‘ ndx ) | |
| 14 | 4 5 | wunndx | ⊢ ( 𝜑 → ndx ∈ 𝑈 ) |
| 15 | 13 4 14 | wunstr | ⊢ ( 𝜑 → ( Hom ‘ ndx ) ∈ 𝑈 ) |
| 16 | 1 2 4 6 | catchomcl | ⊢ ( 𝜑 → ( Hom ‘ 𝑋 ) ∈ 𝑈 ) |
| 17 | 4 16 | wuntpos | ⊢ ( 𝜑 → tpos ( Hom ‘ 𝑋 ) ∈ 𝑈 ) |
| 18 | 4 15 17 | wunop | ⊢ ( 𝜑 → 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑋 ) 〉 ∈ 𝑈 ) |
| 19 | 4 12 18 | wunsets | ⊢ ( 𝜑 → ( 𝑋 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑋 ) 〉 ) ∈ 𝑈 ) |
| 20 | ccoid | ⊢ comp = Slot ( comp ‘ ndx ) | |
| 21 | 20 4 14 | wunstr | ⊢ ( 𝜑 → ( comp ‘ ndx ) ∈ 𝑈 ) |
| 22 | 1 2 4 6 | catcbaselcl | ⊢ ( 𝜑 → ( Base ‘ 𝑋 ) ∈ 𝑈 ) |
| 23 | 4 22 22 | wunxp | ⊢ ( 𝜑 → ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ∈ 𝑈 ) |
| 24 | 4 23 22 | wunxp | ⊢ ( 𝜑 → ( ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) × ( Base ‘ 𝑋 ) ) ∈ 𝑈 ) |
| 25 | 1 2 4 6 | catcccocl | ⊢ ( 𝜑 → ( comp ‘ 𝑋 ) ∈ 𝑈 ) |
| 26 | 4 25 | wunrn | ⊢ ( 𝜑 → ran ( comp ‘ 𝑋 ) ∈ 𝑈 ) |
| 27 | 4 26 | wununi | ⊢ ( 𝜑 → ∪ ran ( comp ‘ 𝑋 ) ∈ 𝑈 ) |
| 28 | 4 27 | wundm | ⊢ ( 𝜑 → dom ∪ ran ( comp ‘ 𝑋 ) ∈ 𝑈 ) |
| 29 | 4 28 | wuncnv | ⊢ ( 𝜑 → ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∈ 𝑈 ) |
| 30 | 4 | wun0 | ⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
| 31 | 4 30 | wunsn | ⊢ ( 𝜑 → { ∅ } ∈ 𝑈 ) |
| 32 | 4 29 31 | wunun | ⊢ ( 𝜑 → ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) ∈ 𝑈 ) |
| 33 | 4 27 | wunrn | ⊢ ( 𝜑 → ran ∪ ran ( comp ‘ 𝑋 ) ∈ 𝑈 ) |
| 34 | 4 32 33 | wunxp | ⊢ ( 𝜑 → ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ∈ 𝑈 ) |
| 35 | 4 34 | wunpw | ⊢ ( 𝜑 → 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ∈ 𝑈 ) |
| 36 | tposssxp | ⊢ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ( ( ◡ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∪ { ∅ } ) × ran ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) | |
| 37 | ovssunirn | ⊢ ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ∪ ran ( comp ‘ 𝑋 ) | |
| 38 | dmss | ⊢ ( ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ∪ ran ( comp ‘ 𝑋 ) → dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ dom ∪ ran ( comp ‘ 𝑋 ) ) | |
| 39 | 37 38 | ax-mp | ⊢ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ dom ∪ ran ( comp ‘ 𝑋 ) |
| 40 | cnvss | ⊢ ( dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ dom ∪ ran ( comp ‘ 𝑋 ) → ◡ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ◡ dom ∪ ran ( comp ‘ 𝑋 ) ) | |
| 41 | unss1 | ⊢ ( ◡ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ◡ dom ∪ ran ( comp ‘ 𝑋 ) → ( ◡ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∪ { ∅ } ) ⊆ ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) ) | |
| 42 | 39 40 41 | mp2b | ⊢ ( ◡ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∪ { ∅ } ) ⊆ ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) |
| 43 | 37 | rnssi | ⊢ ran ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ran ∪ ran ( comp ‘ 𝑋 ) |
| 44 | xpss12 | ⊢ ( ( ( ◡ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∪ { ∅ } ) ⊆ ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) ∧ ran ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ran ∪ ran ( comp ‘ 𝑋 ) ) → ( ( ◡ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∪ { ∅ } ) × ran ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) ⊆ ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ) | |
| 45 | 42 43 44 | mp2an | ⊢ ( ( ◡ dom ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∪ { ∅ } ) × ran ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) ⊆ ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) |
| 46 | 36 45 | sstri | ⊢ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) |
| 47 | elpw2g | ⊢ ( ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ∈ 𝑈 → ( tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∈ 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ↔ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ) ) | |
| 48 | 34 47 | syl | ⊢ ( 𝜑 → ( tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∈ 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ↔ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ⊆ ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ) ) |
| 49 | 46 48 | mpbiri | ⊢ ( 𝜑 → tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∈ 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ) |
| 50 | 49 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∈ 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ) |
| 51 | 50 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∈ 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ) |
| 52 | eqid | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) | |
| 53 | 52 | fmpo | ⊢ ( ∀ 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ∈ 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ↔ ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) : ( ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) × ( Base ‘ 𝑋 ) ) ⟶ 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ) |
| 54 | 51 53 | sylib | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) : ( ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) × ( Base ‘ 𝑋 ) ) ⟶ 𝒫 ( ( ◡ dom ∪ ran ( comp ‘ 𝑋 ) ∪ { ∅ } ) × ran ∪ ran ( comp ‘ 𝑋 ) ) ) |
| 55 | 4 24 35 54 | wunf | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) ∈ 𝑈 ) |
| 56 | 4 21 55 | wunop | ⊢ ( 𝜑 → 〈 ( comp ‘ ndx ) , ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) 〉 ∈ 𝑈 ) |
| 57 | 4 19 56 | wunsets | ⊢ ( 𝜑 → ( ( 𝑋 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑋 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑥 ∈ ( ( Base ‘ 𝑋 ) × ( Base ‘ 𝑋 ) ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ tpos ( 〈 𝑦 , ( 2nd ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st ‘ 𝑥 ) ) ) 〉 ) ∈ 𝑈 ) |
| 58 | 11 57 | eqeltrd | ⊢ ( 𝜑 → 𝑂 ∈ 𝑈 ) |
| 59 | 1 2 4 | catcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 60 | 6 59 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Cat ) ) |
| 61 | 60 | elin2d | ⊢ ( 𝜑 → 𝑋 ∈ Cat ) |
| 62 | 3 | oppccat | ⊢ ( 𝑋 ∈ Cat → 𝑂 ∈ Cat ) |
| 63 | 61 62 | syl | ⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
| 64 | 58 63 | elind | ⊢ ( 𝜑 → 𝑂 ∈ ( 𝑈 ∩ Cat ) ) |
| 65 | 64 59 | eleqtrrd | ⊢ ( 𝜑 → 𝑂 ∈ 𝐵 ) |