This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl . (Contributed by AV, 14-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcbascl.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| catcbascl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| catcbascl.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | ||
| catcbascl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | catcbascl | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcbascl.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | catcbascl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | catcbascl.u | ⊢ ( 𝜑 → 𝑈 ∈ WUni ) | |
| 4 | catcbascl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | 1 2 3 | catcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
| 6 | 4 5 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Cat ) ) |
| 7 | 6 | elin1d | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |