This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcoppccl.c | |- C = ( CatCat ` U ) |
|
| catcoppccl.b | |- B = ( Base ` C ) |
||
| catcoppccl.o | |- O = ( oppCat ` X ) |
||
| catcoppccl.1 | |- ( ph -> U e. WUni ) |
||
| catcoppccl.2 | |- ( ph -> _om e. U ) |
||
| catcoppccl.3 | |- ( ph -> X e. B ) |
||
| Assertion | catcoppccl | |- ( ph -> O e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcoppccl.c | |- C = ( CatCat ` U ) |
|
| 2 | catcoppccl.b | |- B = ( Base ` C ) |
|
| 3 | catcoppccl.o | |- O = ( oppCat ` X ) |
|
| 4 | catcoppccl.1 | |- ( ph -> U e. WUni ) |
|
| 5 | catcoppccl.2 | |- ( ph -> _om e. U ) |
|
| 6 | catcoppccl.3 | |- ( ph -> X e. B ) |
|
| 7 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 8 | eqid | |- ( Hom ` X ) = ( Hom ` X ) |
|
| 9 | eqid | |- ( comp ` X ) = ( comp ` X ) |
|
| 10 | 7 8 9 3 | oppcval | |- ( X e. B -> O = ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) ) |
| 11 | 6 10 | syl | |- ( ph -> O = ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) ) |
| 12 | 1 2 4 6 | catcbascl | |- ( ph -> X e. U ) |
| 13 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 14 | 4 5 | wunndx | |- ( ph -> ndx e. U ) |
| 15 | 13 4 14 | wunstr | |- ( ph -> ( Hom ` ndx ) e. U ) |
| 16 | 1 2 4 6 | catchomcl | |- ( ph -> ( Hom ` X ) e. U ) |
| 17 | 4 16 | wuntpos | |- ( ph -> tpos ( Hom ` X ) e. U ) |
| 18 | 4 15 17 | wunop | |- ( ph -> <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. e. U ) |
| 19 | 4 12 18 | wunsets | |- ( ph -> ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) e. U ) |
| 20 | ccoid | |- comp = Slot ( comp ` ndx ) |
|
| 21 | 20 4 14 | wunstr | |- ( ph -> ( comp ` ndx ) e. U ) |
| 22 | 1 2 4 6 | catcbaselcl | |- ( ph -> ( Base ` X ) e. U ) |
| 23 | 4 22 22 | wunxp | |- ( ph -> ( ( Base ` X ) X. ( Base ` X ) ) e. U ) |
| 24 | 4 23 22 | wunxp | |- ( ph -> ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) e. U ) |
| 25 | 1 2 4 6 | catcccocl | |- ( ph -> ( comp ` X ) e. U ) |
| 26 | 4 25 | wunrn | |- ( ph -> ran ( comp ` X ) e. U ) |
| 27 | 4 26 | wununi | |- ( ph -> U. ran ( comp ` X ) e. U ) |
| 28 | 4 27 | wundm | |- ( ph -> dom U. ran ( comp ` X ) e. U ) |
| 29 | 4 28 | wuncnv | |- ( ph -> `' dom U. ran ( comp ` X ) e. U ) |
| 30 | 4 | wun0 | |- ( ph -> (/) e. U ) |
| 31 | 4 30 | wunsn | |- ( ph -> { (/) } e. U ) |
| 32 | 4 29 31 | wunun | |- ( ph -> ( `' dom U. ran ( comp ` X ) u. { (/) } ) e. U ) |
| 33 | 4 27 | wunrn | |- ( ph -> ran U. ran ( comp ` X ) e. U ) |
| 34 | 4 32 33 | wunxp | |- ( ph -> ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U ) |
| 35 | 4 34 | wunpw | |- ( ph -> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U ) |
| 36 | tposssxp | |- tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) |
|
| 37 | ovssunirn | |- ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ U. ran ( comp ` X ) |
|
| 38 | dmss | |- ( ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ U. ran ( comp ` X ) -> dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X ) ) |
|
| 39 | 37 38 | ax-mp | |- dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X ) |
| 40 | cnvss | |- ( dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ dom U. ran ( comp ` X ) -> `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ `' dom U. ran ( comp ` X ) ) |
|
| 41 | unss1 | |- ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ `' dom U. ran ( comp ` X ) -> ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) ) |
|
| 42 | 39 40 41 | mp2b | |- ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) |
| 43 | 37 | rnssi | |- ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ran U. ran ( comp ` X ) |
| 44 | xpss12 | |- ( ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) C_ ( `' dom U. ran ( comp ` X ) u. { (/) } ) /\ ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ran U. ran ( comp ` X ) ) -> ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) |
|
| 45 | 42 43 44 | mp2an | |- ( ( `' dom ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) u. { (/) } ) X. ran ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) |
| 46 | 36 45 | sstri | |- tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) |
| 47 | elpw2g | |- ( ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) e. U -> ( tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) ) |
|
| 48 | 34 47 | syl | |- ( ph -> ( tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) C_ ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) ) |
| 49 | 46 48 | mpbiri | |- ( ph -> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) |
| 50 | 49 | ralrimivw | |- ( ph -> A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) |
| 51 | 50 | ralrimivw | |- ( ph -> A. x e. ( ( Base ` X ) X. ( Base ` X ) ) A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) |
| 52 | eqid | |- ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) = ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) |
|
| 53 | 52 | fmpo | |- ( A. x e. ( ( Base ` X ) X. ( Base ` X ) ) A. y e. ( Base ` X ) tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) e. ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) <-> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) : ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) --> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) |
| 54 | 51 53 | sylib | |- ( ph -> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) : ( ( ( Base ` X ) X. ( Base ` X ) ) X. ( Base ` X ) ) --> ~P ( ( `' dom U. ran ( comp ` X ) u. { (/) } ) X. ran U. ran ( comp ` X ) ) ) |
| 55 | 4 24 35 54 | wunf | |- ( ph -> ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) e. U ) |
| 56 | 4 21 55 | wunop | |- ( ph -> <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. e. U ) |
| 57 | 4 19 56 | wunsets | |- ( ph -> ( ( X sSet <. ( Hom ` ndx ) , tpos ( Hom ` X ) >. ) sSet <. ( comp ` ndx ) , ( x e. ( ( Base ` X ) X. ( Base ` X ) ) , y e. ( Base ` X ) |-> tpos ( <. y , ( 2nd ` x ) >. ( comp ` X ) ( 1st ` x ) ) ) >. ) e. U ) |
| 58 | 11 57 | eqeltrd | |- ( ph -> O e. U ) |
| 59 | 1 2 4 | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| 60 | 6 59 | eleqtrd | |- ( ph -> X e. ( U i^i Cat ) ) |
| 61 | 60 | elin2d | |- ( ph -> X e. Cat ) |
| 62 | 3 | oppccat | |- ( X e. Cat -> O e. Cat ) |
| 63 | 61 62 | syl | |- ( ph -> O e. Cat ) |
| 64 | 58 63 | elind | |- ( ph -> O e. ( U i^i Cat ) ) |
| 65 | 64 59 | eleqtrrd | |- ( ph -> O e. B ) |