This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| oppcval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| oppcval.x | ⊢ · = ( comp ‘ 𝐶 ) | ||
| oppcval.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| Assertion | oppcval | ⊢ ( 𝐶 ∈ 𝑉 → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | oppcval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | oppcval.x | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | oppcval.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 5 | elex | ⊢ ( 𝐶 ∈ 𝑉 → 𝐶 ∈ V ) | |
| 6 | id | ⊢ ( 𝑐 = 𝐶 → 𝑐 = 𝐶 ) | |
| 7 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐻 ) |
| 9 | 8 | tposeqd | ⊢ ( 𝑐 = 𝐶 → tpos ( Hom ‘ 𝑐 ) = tpos 𝐻 ) |
| 10 | 9 | opeq2d | ⊢ ( 𝑐 = 𝐶 → 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑐 ) 〉 = 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) |
| 11 | 6 10 | oveq12d | ⊢ ( 𝑐 = 𝐶 → ( 𝑐 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑐 ) 〉 ) = ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) ) |
| 12 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 13 | 12 1 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 14 | 13 | sqxpeqd | ⊢ ( 𝑐 = 𝐶 → ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) = ( 𝐵 × 𝐵 ) ) |
| 15 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = ( comp ‘ 𝐶 ) ) | |
| 16 | 15 3 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( comp ‘ 𝑐 ) = · ) |
| 17 | 16 | oveqd | ⊢ ( 𝑐 = 𝐶 → ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑐 ) ( 1st ‘ 𝑢 ) ) = ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) |
| 18 | 17 | tposeqd | ⊢ ( 𝑐 = 𝐶 → tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑐 ) ( 1st ‘ 𝑢 ) ) = tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) |
| 19 | 14 13 18 | mpoeq123dv | ⊢ ( 𝑐 = 𝐶 → ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑧 ∈ ( Base ‘ 𝑐 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑐 ) ( 1st ‘ 𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) ) |
| 20 | 19 | opeq2d | ⊢ ( 𝑐 = 𝐶 → 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑧 ∈ ( Base ‘ 𝑐 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑐 ) ( 1st ‘ 𝑢 ) ) ) 〉 = 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) |
| 21 | 11 20 | oveq12d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑐 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑧 ∈ ( Base ‘ 𝑐 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑐 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 22 | df-oppc | ⊢ oppCat = ( 𝑐 ∈ V ↦ ( ( 𝑐 sSet 〈 ( Hom ‘ ndx ) , tpos ( Hom ‘ 𝑐 ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) , 𝑧 ∈ ( Base ‘ 𝑐 ) ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 ( comp ‘ 𝑐 ) ( 1st ‘ 𝑢 ) ) ) 〉 ) ) | |
| 23 | ovex | ⊢ ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ∈ V | |
| 24 | 21 22 23 | fvmpt | ⊢ ( 𝐶 ∈ V → ( oppCat ‘ 𝐶 ) = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 25 | 5 24 | syl | ⊢ ( 𝐶 ∈ 𝑉 → ( oppCat ‘ 𝐶 ) = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |
| 26 | 4 25 | eqtrid | ⊢ ( 𝐶 ∈ 𝑉 → 𝑂 = ( ( 𝐶 sSet 〈 ( Hom ‘ ndx ) , tpos 𝐻 〉 ) sSet 〈 ( comp ‘ ndx ) , ( 𝑢 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ tpos ( 〈 𝑧 , ( 2nd ‘ 𝑢 ) 〉 · ( 1st ‘ 𝑢 ) ) ) 〉 ) ) |