This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transposition is a subset of a Cartesian product. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tposssxp | ⊢ tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos | ⊢ tpos 𝐹 = ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) | |
| 2 | cossxp | ⊢ ( 𝐹 ∘ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ) ⊆ ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) × ran 𝐹 ) | |
| 3 | 1 2 | eqsstri | ⊢ tpos 𝐹 ⊆ ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) × ran 𝐹 ) |
| 4 | eqid | ⊢ ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) = ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) | |
| 5 | 4 | dmmptss | ⊢ dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) |
| 6 | xpss1 | ⊢ ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) ⊆ ( ◡ dom 𝐹 ∪ { ∅ } ) → ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) × ran 𝐹 ) ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ ( dom ( 𝑥 ∈ ( ◡ dom 𝐹 ∪ { ∅ } ) ↦ ∪ ◡ { 𝑥 } ) × ran 𝐹 ) ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) |
| 8 | 3 7 | sstri | ⊢ tpos 𝐹 ⊆ ( ( ◡ dom 𝐹 ∪ { ∅ } ) × ran 𝐹 ) |