This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The alternate definition of the cardinal of a set given in cardval2 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | card2on | ⊢ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ∈ On ) | |
| 2 | vex | ⊢ 𝑧 ∈ V | |
| 3 | onelss | ⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → 𝑦 ⊆ 𝑧 ) ) | |
| 4 | 3 | imp | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ⊆ 𝑧 ) |
| 5 | ssdomg | ⊢ ( 𝑧 ∈ V → ( 𝑦 ⊆ 𝑧 → 𝑦 ≼ 𝑧 ) ) | |
| 6 | 2 4 5 | mpsyl | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ≼ 𝑧 ) |
| 7 | 1 6 | jca | ⊢ ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) → ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ) |
| 8 | domsdomtr | ⊢ ( ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≺ 𝐴 ) → 𝑦 ≺ 𝐴 ) | |
| 9 | 8 | anim2i | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑦 ≼ 𝑧 ∧ 𝑧 ≺ 𝐴 ) ) → ( 𝑦 ∈ On ∧ 𝑦 ≺ 𝐴 ) ) |
| 10 | 9 | anassrs | ⊢ ( ( ( 𝑦 ∈ On ∧ 𝑦 ≼ 𝑧 ) ∧ 𝑧 ≺ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≺ 𝐴 ) ) |
| 11 | 7 10 | sylan | ⊢ ( ( ( 𝑧 ∈ On ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑧 ≺ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≺ 𝐴 ) ) |
| 12 | 11 | exp31 | ⊢ ( 𝑧 ∈ On → ( 𝑦 ∈ 𝑧 → ( 𝑧 ≺ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≺ 𝐴 ) ) ) ) |
| 13 | 12 | com12 | ⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ On → ( 𝑧 ≺ 𝐴 → ( 𝑦 ∈ On ∧ 𝑦 ≺ 𝐴 ) ) ) ) |
| 14 | 13 | impd | ⊢ ( 𝑦 ∈ 𝑧 → ( ( 𝑧 ∈ On ∧ 𝑧 ≺ 𝐴 ) → ( 𝑦 ∈ On ∧ 𝑦 ≺ 𝐴 ) ) ) |
| 15 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≺ 𝐴 ↔ 𝑧 ≺ 𝐴 ) ) | |
| 16 | 15 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ↔ ( 𝑧 ∈ On ∧ 𝑧 ≺ 𝐴 ) ) |
| 17 | breq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≺ 𝐴 ↔ 𝑦 ≺ 𝐴 ) ) | |
| 18 | 17 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ↔ ( 𝑦 ∈ On ∧ 𝑦 ≺ 𝐴 ) ) |
| 19 | 14 16 18 | 3imtr4g | ⊢ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) |
| 21 | 20 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) |
| 22 | dftr2 | ⊢ ( Tr { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) → 𝑦 ∈ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) ) | |
| 23 | 21 22 | mpbir | ⊢ Tr { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } |
| 24 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ⊆ On | |
| 25 | ordon | ⊢ Ord On | |
| 26 | trssord | ⊢ ( ( Tr { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∧ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ⊆ On ∧ Ord On ) → Ord { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) | |
| 27 | 23 24 25 26 | mp3an | ⊢ Ord { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } |
| 28 | hartogs | ⊢ ( 𝐴 ∈ V → { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ) | |
| 29 | sdomdom | ⊢ ( 𝑥 ≺ 𝐴 → 𝑥 ≼ 𝐴 ) | |
| 30 | 29 | a1i | ⊢ ( 𝑥 ∈ On → ( 𝑥 ≺ 𝐴 → 𝑥 ≼ 𝐴 ) ) |
| 31 | 30 | ss2rabi | ⊢ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ⊆ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } |
| 32 | ssexg | ⊢ ( ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ⊆ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∧ { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On ) → { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ V ) | |
| 33 | 31 32 | mpan | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≼ 𝐴 } ∈ On → { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ V ) |
| 34 | elong | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ V → ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) ) | |
| 35 | 28 33 34 | 3syl | ⊢ ( 𝐴 ∈ V → ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ On ↔ Ord { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) ) |
| 36 | 27 35 | mpbiri | ⊢ ( 𝐴 ∈ V → { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ On ) |
| 37 | 0elon | ⊢ ∅ ∈ On | |
| 38 | eleq1 | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } = ∅ → ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ On ↔ ∅ ∈ On ) ) | |
| 39 | 37 38 | mpbiri | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } = ∅ → { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ On ) |
| 40 | df-ne | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ≠ ∅ ↔ ¬ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } = ∅ ) | |
| 41 | rabn0 | ⊢ ( { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ≠ ∅ ↔ ∃ 𝑥 ∈ On 𝑥 ≺ 𝐴 ) | |
| 42 | 40 41 | bitr3i | ⊢ ( ¬ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } = ∅ ↔ ∃ 𝑥 ∈ On 𝑥 ≺ 𝐴 ) |
| 43 | relsdom | ⊢ Rel ≺ | |
| 44 | 43 | brrelex2i | ⊢ ( 𝑥 ≺ 𝐴 → 𝐴 ∈ V ) |
| 45 | 44 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ On 𝑥 ≺ 𝐴 → 𝐴 ∈ V ) |
| 46 | 42 45 | sylbi | ⊢ ( ¬ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } = ∅ → 𝐴 ∈ V ) |
| 47 | 39 46 | nsyl4 | ⊢ ( ¬ 𝐴 ∈ V → { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ On ) |
| 48 | 36 47 | pm2.61i | ⊢ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ∈ On |