This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The alternate definition of the cardinal of a set given in cardval2 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | card2on | |- { x e. On | x ~< A } e. On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | |- ( ( z e. On /\ y e. z ) -> y e. On ) |
|
| 2 | vex | |- z e. _V |
|
| 3 | onelss | |- ( z e. On -> ( y e. z -> y C_ z ) ) |
|
| 4 | 3 | imp | |- ( ( z e. On /\ y e. z ) -> y C_ z ) |
| 5 | ssdomg | |- ( z e. _V -> ( y C_ z -> y ~<_ z ) ) |
|
| 6 | 2 4 5 | mpsyl | |- ( ( z e. On /\ y e. z ) -> y ~<_ z ) |
| 7 | 1 6 | jca | |- ( ( z e. On /\ y e. z ) -> ( y e. On /\ y ~<_ z ) ) |
| 8 | domsdomtr | |- ( ( y ~<_ z /\ z ~< A ) -> y ~< A ) |
|
| 9 | 8 | anim2i | |- ( ( y e. On /\ ( y ~<_ z /\ z ~< A ) ) -> ( y e. On /\ y ~< A ) ) |
| 10 | 9 | anassrs | |- ( ( ( y e. On /\ y ~<_ z ) /\ z ~< A ) -> ( y e. On /\ y ~< A ) ) |
| 11 | 7 10 | sylan | |- ( ( ( z e. On /\ y e. z ) /\ z ~< A ) -> ( y e. On /\ y ~< A ) ) |
| 12 | 11 | exp31 | |- ( z e. On -> ( y e. z -> ( z ~< A -> ( y e. On /\ y ~< A ) ) ) ) |
| 13 | 12 | com12 | |- ( y e. z -> ( z e. On -> ( z ~< A -> ( y e. On /\ y ~< A ) ) ) ) |
| 14 | 13 | impd | |- ( y e. z -> ( ( z e. On /\ z ~< A ) -> ( y e. On /\ y ~< A ) ) ) |
| 15 | breq1 | |- ( x = z -> ( x ~< A <-> z ~< A ) ) |
|
| 16 | 15 | elrab | |- ( z e. { x e. On | x ~< A } <-> ( z e. On /\ z ~< A ) ) |
| 17 | breq1 | |- ( x = y -> ( x ~< A <-> y ~< A ) ) |
|
| 18 | 17 | elrab | |- ( y e. { x e. On | x ~< A } <-> ( y e. On /\ y ~< A ) ) |
| 19 | 14 16 18 | 3imtr4g | |- ( y e. z -> ( z e. { x e. On | x ~< A } -> y e. { x e. On | x ~< A } ) ) |
| 20 | 19 | imp | |- ( ( y e. z /\ z e. { x e. On | x ~< A } ) -> y e. { x e. On | x ~< A } ) |
| 21 | 20 | gen2 | |- A. y A. z ( ( y e. z /\ z e. { x e. On | x ~< A } ) -> y e. { x e. On | x ~< A } ) |
| 22 | dftr2 | |- ( Tr { x e. On | x ~< A } <-> A. y A. z ( ( y e. z /\ z e. { x e. On | x ~< A } ) -> y e. { x e. On | x ~< A } ) ) |
|
| 23 | 21 22 | mpbir | |- Tr { x e. On | x ~< A } |
| 24 | ssrab2 | |- { x e. On | x ~< A } C_ On |
|
| 25 | ordon | |- Ord On |
|
| 26 | trssord | |- ( ( Tr { x e. On | x ~< A } /\ { x e. On | x ~< A } C_ On /\ Ord On ) -> Ord { x e. On | x ~< A } ) |
|
| 27 | 23 24 25 26 | mp3an | |- Ord { x e. On | x ~< A } |
| 28 | hartogs | |- ( A e. _V -> { x e. On | x ~<_ A } e. On ) |
|
| 29 | sdomdom | |- ( x ~< A -> x ~<_ A ) |
|
| 30 | 29 | a1i | |- ( x e. On -> ( x ~< A -> x ~<_ A ) ) |
| 31 | 30 | ss2rabi | |- { x e. On | x ~< A } C_ { x e. On | x ~<_ A } |
| 32 | ssexg | |- ( ( { x e. On | x ~< A } C_ { x e. On | x ~<_ A } /\ { x e. On | x ~<_ A } e. On ) -> { x e. On | x ~< A } e. _V ) |
|
| 33 | 31 32 | mpan | |- ( { x e. On | x ~<_ A } e. On -> { x e. On | x ~< A } e. _V ) |
| 34 | elong | |- ( { x e. On | x ~< A } e. _V -> ( { x e. On | x ~< A } e. On <-> Ord { x e. On | x ~< A } ) ) |
|
| 35 | 28 33 34 | 3syl | |- ( A e. _V -> ( { x e. On | x ~< A } e. On <-> Ord { x e. On | x ~< A } ) ) |
| 36 | 27 35 | mpbiri | |- ( A e. _V -> { x e. On | x ~< A } e. On ) |
| 37 | 0elon | |- (/) e. On |
|
| 38 | eleq1 | |- ( { x e. On | x ~< A } = (/) -> ( { x e. On | x ~< A } e. On <-> (/) e. On ) ) |
|
| 39 | 37 38 | mpbiri | |- ( { x e. On | x ~< A } = (/) -> { x e. On | x ~< A } e. On ) |
| 40 | df-ne | |- ( { x e. On | x ~< A } =/= (/) <-> -. { x e. On | x ~< A } = (/) ) |
|
| 41 | rabn0 | |- ( { x e. On | x ~< A } =/= (/) <-> E. x e. On x ~< A ) |
|
| 42 | 40 41 | bitr3i | |- ( -. { x e. On | x ~< A } = (/) <-> E. x e. On x ~< A ) |
| 43 | relsdom | |- Rel ~< |
|
| 44 | 43 | brrelex2i | |- ( x ~< A -> A e. _V ) |
| 45 | 44 | rexlimivw | |- ( E. x e. On x ~< A -> A e. _V ) |
| 46 | 42 45 | sylbi | |- ( -. { x e. On | x ~< A } = (/) -> A e. _V ) |
| 47 | 39 46 | nsyl4 | |- ( -. A e. _V -> { x e. On | x ~< A } e. On ) |
| 48 | 36 47 | pm2.61i | |- { x e. On | x ~< A } e. On |