This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The alternate definition of the cardinal of a set given in cardval2 has the curious property that for non-numerable sets (for which ndmfv yields (/) ), it still evaluates to a nonempty set, and indeed it contains _om . (Contributed by Mario Carneiro, 15-Jan-2013) (Revised by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | card2inf.1 | ⊢ 𝐴 ∈ V | |
| Assertion | card2inf | ⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | card2inf.1 | ⊢ 𝐴 ∈ V | |
| 2 | breq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ≺ 𝐴 ↔ ∅ ≺ 𝐴 ) ) | |
| 3 | breq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ≺ 𝐴 ↔ 𝑛 ≺ 𝐴 ) ) | |
| 4 | breq1 | ⊢ ( 𝑥 = suc 𝑛 → ( 𝑥 ≺ 𝐴 ↔ suc 𝑛 ≺ 𝐴 ) ) | |
| 5 | 0elon | ⊢ ∅ ∈ On | |
| 6 | breq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ≈ 𝐴 ↔ ∅ ≈ 𝐴 ) ) | |
| 7 | 6 | rspcev | ⊢ ( ( ∅ ∈ On ∧ ∅ ≈ 𝐴 ) → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) |
| 8 | 5 7 | mpan | ⊢ ( ∅ ≈ 𝐴 → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) |
| 9 | 8 | con3i | ⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ¬ ∅ ≈ 𝐴 ) |
| 10 | 1 | 0dom | ⊢ ∅ ≼ 𝐴 |
| 11 | brsdom | ⊢ ( ∅ ≺ 𝐴 ↔ ( ∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴 ) ) | |
| 12 | 10 11 | mpbiran | ⊢ ( ∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴 ) |
| 13 | 9 12 | sylibr | ⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ∅ ≺ 𝐴 ) |
| 14 | sucdom2 | ⊢ ( 𝑛 ≺ 𝐴 → suc 𝑛 ≼ 𝐴 ) | |
| 15 | 14 | ad2antll | ⊢ ( ( 𝑛 ∈ ω ∧ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴 ) ) → suc 𝑛 ≼ 𝐴 ) |
| 16 | nnon | ⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) | |
| 17 | onsuc | ⊢ ( 𝑛 ∈ On → suc 𝑛 ∈ On ) | |
| 18 | breq1 | ⊢ ( 𝑦 = suc 𝑛 → ( 𝑦 ≈ 𝐴 ↔ suc 𝑛 ≈ 𝐴 ) ) | |
| 19 | 18 | rspcev | ⊢ ( ( suc 𝑛 ∈ On ∧ suc 𝑛 ≈ 𝐴 ) → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) |
| 20 | 19 | ex | ⊢ ( suc 𝑛 ∈ On → ( suc 𝑛 ≈ 𝐴 → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) ) |
| 21 | 16 17 20 | 3syl | ⊢ ( 𝑛 ∈ ω → ( suc 𝑛 ≈ 𝐴 → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) ) |
| 22 | 21 | con3dimp | ⊢ ( ( 𝑛 ∈ ω ∧ ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) → ¬ suc 𝑛 ≈ 𝐴 ) |
| 23 | 22 | adantrr | ⊢ ( ( 𝑛 ∈ ω ∧ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴 ) ) → ¬ suc 𝑛 ≈ 𝐴 ) |
| 24 | brsdom | ⊢ ( suc 𝑛 ≺ 𝐴 ↔ ( suc 𝑛 ≼ 𝐴 ∧ ¬ suc 𝑛 ≈ 𝐴 ) ) | |
| 25 | 15 23 24 | sylanbrc | ⊢ ( ( 𝑛 ∈ ω ∧ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴 ) ) → suc 𝑛 ≺ 𝐴 ) |
| 26 | 25 | exp32 | ⊢ ( 𝑛 ∈ ω → ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ( 𝑛 ≺ 𝐴 → suc 𝑛 ≺ 𝐴 ) ) ) |
| 27 | 2 3 4 13 26 | finds2 | ⊢ ( 𝑥 ∈ ω → ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝑥 ≺ 𝐴 ) ) |
| 28 | 27 | com12 | ⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ( 𝑥 ∈ ω → 𝑥 ≺ 𝐴 ) ) |
| 29 | 28 | ralrimiv | ⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ∀ 𝑥 ∈ ω 𝑥 ≺ 𝐴 ) |
| 30 | omsson | ⊢ ω ⊆ On | |
| 31 | ssrab | ⊢ ( ω ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ↔ ( ω ⊆ On ∧ ∀ 𝑥 ∈ ω 𝑥 ≺ 𝐴 ) ) | |
| 32 | 30 31 | mpbiran | ⊢ ( ω ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ↔ ∀ 𝑥 ∈ ω 𝑥 ≺ 𝐴 ) |
| 33 | 29 32 | sylibr | ⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) |