This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | raldifeq.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| raldifeq.2 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝜓 ) | ||
| Assertion | raldifeq | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raldifeq.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | raldifeq.2 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝜓 ) | |
| 3 | 2 | biantrud | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝜓 ) ) ) |
| 4 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝜓 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜓 ∧ ∀ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) 𝜓 ) ) | |
| 5 | 3 4 | bitr4di | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝜓 ) ) |
| 6 | undif | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) | |
| 7 | 1 6 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 8 | 7 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 9 | 5 8 | bitrd | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |