This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is finitely supported from B to A iff the extended function is finitely supported from D to A . (Contributed by Mario Carneiro, 25-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnfrescl.d | |- ( ph -> D e. On ) |
||
| cantnfrescl.b | |- ( ph -> B C_ D ) |
||
| cantnfrescl.x | |- ( ( ph /\ n e. ( D \ B ) ) -> X = (/) ) |
||
| cantnfrescl.a | |- ( ph -> (/) e. A ) |
||
| cantnfrescl.t | |- T = dom ( A CNF D ) |
||
| Assertion | cantnfrescl | |- ( ph -> ( ( n e. B |-> X ) e. S <-> ( n e. D |-> X ) e. T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnfrescl.d | |- ( ph -> D e. On ) |
|
| 5 | cantnfrescl.b | |- ( ph -> B C_ D ) |
|
| 6 | cantnfrescl.x | |- ( ( ph /\ n e. ( D \ B ) ) -> X = (/) ) |
|
| 7 | cantnfrescl.a | |- ( ph -> (/) e. A ) |
|
| 8 | cantnfrescl.t | |- T = dom ( A CNF D ) |
|
| 9 | 7 | adantr | |- ( ( ph /\ n e. ( D \ B ) ) -> (/) e. A ) |
| 10 | 6 9 | eqeltrd | |- ( ( ph /\ n e. ( D \ B ) ) -> X e. A ) |
| 11 | 10 | ralrimiva | |- ( ph -> A. n e. ( D \ B ) X e. A ) |
| 12 | 5 11 | raldifeq | |- ( ph -> ( A. n e. B X e. A <-> A. n e. D X e. A ) ) |
| 13 | eqid | |- ( n e. B |-> X ) = ( n e. B |-> X ) |
|
| 14 | 13 | fmpt | |- ( A. n e. B X e. A <-> ( n e. B |-> X ) : B --> A ) |
| 15 | eqid | |- ( n e. D |-> X ) = ( n e. D |-> X ) |
|
| 16 | 15 | fmpt | |- ( A. n e. D X e. A <-> ( n e. D |-> X ) : D --> A ) |
| 17 | 12 14 16 | 3bitr3g | |- ( ph -> ( ( n e. B |-> X ) : B --> A <-> ( n e. D |-> X ) : D --> A ) ) |
| 18 | 3 | mptexd | |- ( ph -> ( n e. B |-> X ) e. _V ) |
| 19 | funmpt | |- Fun ( n e. B |-> X ) |
|
| 20 | 19 | a1i | |- ( ph -> Fun ( n e. B |-> X ) ) |
| 21 | 4 | mptexd | |- ( ph -> ( n e. D |-> X ) e. _V ) |
| 22 | funmpt | |- Fun ( n e. D |-> X ) |
|
| 23 | 21 22 | jctir | |- ( ph -> ( ( n e. D |-> X ) e. _V /\ Fun ( n e. D |-> X ) ) ) |
| 24 | 18 20 23 | jca31 | |- ( ph -> ( ( ( n e. B |-> X ) e. _V /\ Fun ( n e. B |-> X ) ) /\ ( ( n e. D |-> X ) e. _V /\ Fun ( n e. D |-> X ) ) ) ) |
| 25 | 4 5 6 | extmptsuppeq | |- ( ph -> ( ( n e. B |-> X ) supp (/) ) = ( ( n e. D |-> X ) supp (/) ) ) |
| 26 | suppeqfsuppbi | |- ( ( ( ( n e. B |-> X ) e. _V /\ Fun ( n e. B |-> X ) ) /\ ( ( n e. D |-> X ) e. _V /\ Fun ( n e. D |-> X ) ) ) -> ( ( ( n e. B |-> X ) supp (/) ) = ( ( n e. D |-> X ) supp (/) ) -> ( ( n e. B |-> X ) finSupp (/) <-> ( n e. D |-> X ) finSupp (/) ) ) ) |
|
| 27 | 24 25 26 | sylc | |- ( ph -> ( ( n e. B |-> X ) finSupp (/) <-> ( n e. D |-> X ) finSupp (/) ) ) |
| 28 | 17 27 | anbi12d | |- ( ph -> ( ( ( n e. B |-> X ) : B --> A /\ ( n e. B |-> X ) finSupp (/) ) <-> ( ( n e. D |-> X ) : D --> A /\ ( n e. D |-> X ) finSupp (/) ) ) ) |
| 29 | 1 2 3 | cantnfs | |- ( ph -> ( ( n e. B |-> X ) e. S <-> ( ( n e. B |-> X ) : B --> A /\ ( n e. B |-> X ) finSupp (/) ) ) ) |
| 30 | 8 2 4 | cantnfs | |- ( ph -> ( ( n e. D |-> X ) e. T <-> ( ( n e. D |-> X ) : D --> A /\ ( n e. D |-> X ) finSupp (/) ) ) ) |
| 31 | 28 29 30 | 3bitr4d | |- ( ph -> ( ( n e. B |-> X ) e. S <-> ( n e. D |-> X ) e. T ) ) |