This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two functions have the same support, one function is finitely supported iff the other one is finitely supported. (Contributed by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppeqfsuppbi | ⊢ ( ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) → ( ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) → ( 𝐹 finSupp 𝑍 ↔ 𝐺 finSupp 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprlr | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) ) → Fun 𝐹 ) | |
| 2 | simprll | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) ) → 𝐹 ∈ 𝑈 ) | |
| 3 | simpl | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) ) → 𝑍 ∈ V ) | |
| 4 | funisfsupp | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ 𝑈 ∧ 𝑍 ∈ V ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 5 | 1 2 3 4 | syl3anc | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑍 ∈ V ∧ ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) ) ∧ ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) ) → ( 𝐹 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 7 | simpr | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) → Fun 𝐺 ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ 𝑍 ∈ V ) → Fun 𝐺 ) |
| 9 | simpl | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) → 𝐺 ∈ 𝑉 ) | |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ 𝑍 ∈ V ) → 𝐺 ∈ 𝑉 ) |
| 11 | simpr | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) | |
| 12 | funisfsupp | ⊢ ( ( Fun 𝐺 ∧ 𝐺 ∈ 𝑉 ∧ 𝑍 ∈ V ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) | |
| 13 | 8 10 11 12 | syl3anc | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ∧ 𝑍 ∈ V ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) → ( 𝑍 ∈ V → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) → ( 𝑍 ∈ V → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) ) |
| 16 | 15 | impcom | ⊢ ( ( 𝑍 ∈ V ∧ ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) |
| 17 | eleq1 | ⊢ ( ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin ↔ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) | |
| 18 | 17 | bicomd | ⊢ ( ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) → ( ( 𝐺 supp 𝑍 ) ∈ Fin ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 19 | 16 18 | sylan9bb | ⊢ ( ( ( 𝑍 ∈ V ∧ ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) ) ∧ ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) ) → ( 𝐺 finSupp 𝑍 ↔ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 20 | 6 19 | bitr4d | ⊢ ( ( ( 𝑍 ∈ V ∧ ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) ) ∧ ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) ) → ( 𝐹 finSupp 𝑍 ↔ 𝐺 finSupp 𝑍 ) ) |
| 21 | 20 | exp31 | ⊢ ( 𝑍 ∈ V → ( ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) → ( ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) → ( 𝐹 finSupp 𝑍 ↔ 𝐺 finSupp 𝑍 ) ) ) ) |
| 22 | relfsupp | ⊢ Rel finSupp | |
| 23 | 22 | brrelex2i | ⊢ ( 𝐹 finSupp 𝑍 → 𝑍 ∈ V ) |
| 24 | 22 | brrelex2i | ⊢ ( 𝐺 finSupp 𝑍 → 𝑍 ∈ V ) |
| 25 | 23 24 | pm5.21ni | ⊢ ( ¬ 𝑍 ∈ V → ( 𝐹 finSupp 𝑍 ↔ 𝐺 finSupp 𝑍 ) ) |
| 26 | 25 | 2a1d | ⊢ ( ¬ 𝑍 ∈ V → ( ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) → ( ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) → ( 𝐹 finSupp 𝑍 ↔ 𝐺 finSupp 𝑍 ) ) ) ) |
| 27 | 21 26 | pm2.61i | ⊢ ( ( ( 𝐹 ∈ 𝑈 ∧ Fun 𝐹 ) ∧ ( 𝐺 ∈ 𝑉 ∧ Fun 𝐺 ) ) → ( ( 𝐹 supp 𝑍 ) = ( 𝐺 supp 𝑍 ) → ( 𝐹 finSupp 𝑍 ↔ 𝐺 finSupp 𝑍 ) ) ) |