This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of an extended function is the same as the original. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | extmptsuppeq.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| extmptsuppeq.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | ||
| extmptsuppeq.z | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 = 𝑍 ) | ||
| Assertion | extmptsuppeq | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extmptsuppeq.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 2 | extmptsuppeq.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 3 | extmptsuppeq.z | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 = 𝑍 ) | |
| 4 | 2 | adantl | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐴 ⊆ 𝐵 ) |
| 5 | 4 | sseld | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( 𝑛 ∈ 𝐴 → 𝑛 ∈ 𝐵 ) ) |
| 6 | 5 | anim1d | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐴 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) → ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) ) |
| 7 | eldif | ⊢ ( 𝑛 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑛 ∈ 𝐵 ∧ ¬ 𝑛 ∈ 𝐴 ) ) | |
| 8 | 3 | adantll | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝑋 = 𝑍 ) |
| 9 | 7 8 | sylan2br | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑛 ∈ 𝐵 ∧ ¬ 𝑛 ∈ 𝐴 ) ) → 𝑋 = 𝑍 ) |
| 10 | 9 | expr | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ 𝐵 ) → ( ¬ 𝑛 ∈ 𝐴 → 𝑋 = 𝑍 ) ) |
| 11 | elsn2g | ⊢ ( 𝑍 ∈ V → ( 𝑋 ∈ { 𝑍 } ↔ 𝑋 = 𝑍 ) ) | |
| 12 | elndif | ⊢ ( 𝑋 ∈ { 𝑍 } → ¬ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) | |
| 13 | 11 12 | biimtrrdi | ⊢ ( 𝑍 ∈ V → ( 𝑋 = 𝑍 → ¬ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) |
| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ 𝐵 ) → ( 𝑋 = 𝑍 → ¬ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) |
| 15 | 10 14 | syld | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ 𝐵 ) → ( ¬ 𝑛 ∈ 𝐴 → ¬ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) |
| 16 | 15 | con4d | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ 𝑛 ∈ 𝐵 ) → ( 𝑋 ∈ ( V ∖ { 𝑍 } ) → 𝑛 ∈ 𝐴 ) ) |
| 17 | 16 | impr | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) → 𝑛 ∈ 𝐴 ) |
| 18 | simprr | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) → 𝑋 ∈ ( V ∖ { 𝑍 } ) ) | |
| 19 | 17 18 | jca | ⊢ ( ( ( 𝑍 ∈ V ∧ 𝜑 ) ∧ ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) → ( 𝑛 ∈ 𝐴 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) → ( 𝑛 ∈ 𝐴 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) ) |
| 21 | 6 20 | impbid | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐴 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ↔ ( 𝑛 ∈ 𝐵 ∧ 𝑋 ∈ ( V ∖ { 𝑍 } ) ) ) ) |
| 22 | 21 | rabbidva2 | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → { 𝑛 ∈ 𝐴 ∣ 𝑋 ∈ ( V ∖ { 𝑍 } ) } = { 𝑛 ∈ 𝐵 ∣ 𝑋 ∈ ( V ∖ { 𝑍 } ) } ) |
| 23 | eqid | ⊢ ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) | |
| 24 | 1 2 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐴 ∈ V ) |
| 26 | simpl | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝑍 ∈ V ) | |
| 27 | 23 25 26 | mptsuppdifd | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = { 𝑛 ∈ 𝐴 ∣ 𝑋 ∈ ( V ∖ { 𝑍 } ) } ) |
| 28 | eqid | ⊢ ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) = ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) | |
| 29 | 1 | adantl | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → 𝐵 ∈ 𝑊 ) |
| 30 | 28 29 26 | mptsuppdifd | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) = { 𝑛 ∈ 𝐵 ∣ 𝑋 ∈ ( V ∖ { 𝑍 } ) } ) |
| 31 | 22 27 30 | 3eqtr4d | ⊢ ( ( 𝑍 ∈ V ∧ 𝜑 ) → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) |
| 32 | 31 | ex | ⊢ ( 𝑍 ∈ V → ( 𝜑 → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) ) |
| 33 | simpr | ⊢ ( ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) | |
| 34 | supp0prc | ⊢ ( ¬ ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ∅ ) | |
| 35 | 33 34 | nsyl5 | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ∅ ) |
| 36 | simpr | ⊢ ( ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ∧ 𝑍 ∈ V ) → 𝑍 ∈ V ) | |
| 37 | supp0prc | ⊢ ( ¬ ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) = ∅ ) | |
| 38 | 36 37 | nsyl5 | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) = ∅ ) |
| 39 | 35 38 | eqtr4d | ⊢ ( ¬ 𝑍 ∈ V → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) |
| 40 | 39 | a1d | ⊢ ( ¬ 𝑍 ∈ V → ( 𝜑 → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) ) |
| 41 | 32 40 | pm2.61i | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐴 ↦ 𝑋 ) supp 𝑍 ) = ( ( 𝑛 ∈ 𝐵 ↦ 𝑋 ) supp 𝑍 ) ) |