This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of well-orderable subsets of a set A strictly dominates A . A stronger form of canth2 . Corollary 1.4(a) of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 19-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canthnum | |- ( A e. V -> A ~< ( ~P A i^i dom card ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 2 | inex1g | |- ( ~P A e. _V -> ( ~P A i^i Fin ) e. _V ) |
|
| 3 | infpwfidom | |- ( ( ~P A i^i Fin ) e. _V -> A ~<_ ( ~P A i^i Fin ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( A e. V -> A ~<_ ( ~P A i^i Fin ) ) |
| 5 | inex1g | |- ( ~P A e. _V -> ( ~P A i^i dom card ) e. _V ) |
|
| 6 | 1 5 | syl | |- ( A e. V -> ( ~P A i^i dom card ) e. _V ) |
| 7 | finnum | |- ( x e. Fin -> x e. dom card ) |
|
| 8 | 7 | ssriv | |- Fin C_ dom card |
| 9 | sslin | |- ( Fin C_ dom card -> ( ~P A i^i Fin ) C_ ( ~P A i^i dom card ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ~P A i^i Fin ) C_ ( ~P A i^i dom card ) |
| 11 | ssdomg | |- ( ( ~P A i^i dom card ) e. _V -> ( ( ~P A i^i Fin ) C_ ( ~P A i^i dom card ) -> ( ~P A i^i Fin ) ~<_ ( ~P A i^i dom card ) ) ) |
|
| 12 | 6 10 11 | mpisyl | |- ( A e. V -> ( ~P A i^i Fin ) ~<_ ( ~P A i^i dom card ) ) |
| 13 | domtr | |- ( ( A ~<_ ( ~P A i^i Fin ) /\ ( ~P A i^i Fin ) ~<_ ( ~P A i^i dom card ) ) -> A ~<_ ( ~P A i^i dom card ) ) |
|
| 14 | 4 12 13 | syl2anc | |- ( A e. V -> A ~<_ ( ~P A i^i dom card ) ) |
| 15 | eqid | |- { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } |
|
| 16 | 15 | fpwwecbv | |- { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( f ` ( `' s " { z } ) ) = z ) ) } |
| 17 | eqid | |- U. dom { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } = U. dom { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } |
|
| 18 | eqid | |- ( `' ( { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } ` U. dom { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } ) " { ( f ` U. dom { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } ) } ) = ( `' ( { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } ` U. dom { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } ) " { ( f ` U. dom { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( f ` ( `' r " { y } ) ) = y ) ) } ) } ) |
|
| 19 | 16 17 18 | canthnumlem | |- ( A e. V -> -. f : ( ~P A i^i dom card ) -1-1-> A ) |
| 20 | f1of1 | |- ( f : ( ~P A i^i dom card ) -1-1-onto-> A -> f : ( ~P A i^i dom card ) -1-1-> A ) |
|
| 21 | 19 20 | nsyl | |- ( A e. V -> -. f : ( ~P A i^i dom card ) -1-1-onto-> A ) |
| 22 | 21 | nexdv | |- ( A e. V -> -. E. f f : ( ~P A i^i dom card ) -1-1-onto-> A ) |
| 23 | ensym | |- ( A ~~ ( ~P A i^i dom card ) -> ( ~P A i^i dom card ) ~~ A ) |
|
| 24 | bren | |- ( ( ~P A i^i dom card ) ~~ A <-> E. f f : ( ~P A i^i dom card ) -1-1-onto-> A ) |
|
| 25 | 23 24 | sylib | |- ( A ~~ ( ~P A i^i dom card ) -> E. f f : ( ~P A i^i dom card ) -1-1-onto-> A ) |
| 26 | 22 25 | nsyl | |- ( A e. V -> -. A ~~ ( ~P A i^i dom card ) ) |
| 27 | brsdom | |- ( A ~< ( ~P A i^i dom card ) <-> ( A ~<_ ( ~P A i^i dom card ) /\ -. A ~~ ( ~P A i^i dom card ) ) ) |
|
| 28 | 14 26 27 | sylanbrc | |- ( A e. V -> A ~< ( ~P A i^i dom card ) ) |