This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| zrrhm.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| zrrhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | ||
| c0snmhm.z | ⊢ 𝑍 = ( 0g ‘ 𝑇 ) | ||
| Assertion | c0snmhm | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| 2 | zrrhm.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 3 | zrrhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | |
| 4 | c0snmhm.z | ⊢ 𝑍 = ( 0g ‘ 𝑇 ) | |
| 5 | pm3.22 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ) | |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → ( 𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ) |
| 7 | simp1 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝑆 ∈ Mnd ) | |
| 8 | mndmgm | ⊢ ( 𝑇 ∈ Mnd → 𝑇 ∈ Mgm ) | |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝑇 ∈ Mgm ) |
| 10 | fveq2 | ⊢ ( 𝐵 = { 𝑍 } → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ { 𝑍 } ) ) | |
| 11 | 4 | fvexi | ⊢ 𝑍 ∈ V |
| 12 | hashsng | ⊢ ( 𝑍 ∈ V → ( ♯ ‘ { 𝑍 } ) = 1 ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ♯ ‘ { 𝑍 } ) = 1 |
| 14 | 10 13 | eqtrdi | ⊢ ( 𝐵 = { 𝑍 } → ( ♯ ‘ 𝐵 ) = 1 ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → ( ♯ ‘ 𝐵 ) = 1 ) |
| 16 | 1 2 3 | c0snmgmhm | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ) |
| 17 | 7 9 15 16 | syl3anc | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ) |
| 18 | 3 | a1i | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) ) |
| 19 | eqidd | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) ∧ 𝑥 = 𝑍 ) → 0 = 0 ) | |
| 20 | 11 | snid | ⊢ 𝑍 ∈ { 𝑍 } |
| 21 | eleq2 | ⊢ ( 𝐵 = { 𝑍 } → ( 𝑍 ∈ 𝐵 ↔ 𝑍 ∈ { 𝑍 } ) ) | |
| 22 | 20 21 | mpbiri | ⊢ ( 𝐵 = { 𝑍 } → 𝑍 ∈ 𝐵 ) |
| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝑍 ∈ 𝐵 ) |
| 24 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 25 | 24 2 | mndidcl | ⊢ ( 𝑆 ∈ Mnd → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 27 | 18 19 23 26 | fvmptd | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → ( 𝐻 ‘ 𝑍 ) = 0 ) |
| 28 | 17 27 | jca | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → ( 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ∧ ( 𝐻 ‘ 𝑍 ) = 0 ) ) |
| 29 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 30 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 31 | 1 24 29 30 4 2 | ismhm0 | ⊢ ( 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ↔ ( ( 𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd ) ∧ ( 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ∧ ( 𝐻 ‘ 𝑍 ) = 0 ) ) ) |
| 32 | 6 28 31 | sylanbrc | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = { 𝑍 } ) → 𝐻 ∈ ( 𝑇 MndHom 𝑆 ) ) |