This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrhm.b | |- B = ( Base ` T ) |
|
| zrrhm.0 | |- .0. = ( 0g ` S ) |
||
| zrrhm.h | |- H = ( x e. B |-> .0. ) |
||
| c0snmhm.z | |- Z = ( 0g ` T ) |
||
| Assertion | c0snmhm | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> H e. ( T MndHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrhm.b | |- B = ( Base ` T ) |
|
| 2 | zrrhm.0 | |- .0. = ( 0g ` S ) |
|
| 3 | zrrhm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | c0snmhm.z | |- Z = ( 0g ` T ) |
|
| 5 | pm3.22 | |- ( ( S e. Mnd /\ T e. Mnd ) -> ( T e. Mnd /\ S e. Mnd ) ) |
|
| 6 | 5 | 3adant3 | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> ( T e. Mnd /\ S e. Mnd ) ) |
| 7 | simp1 | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> S e. Mnd ) |
|
| 8 | mndmgm | |- ( T e. Mnd -> T e. Mgm ) |
|
| 9 | 8 | 3ad2ant2 | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> T e. Mgm ) |
| 10 | fveq2 | |- ( B = { Z } -> ( # ` B ) = ( # ` { Z } ) ) |
|
| 11 | 4 | fvexi | |- Z e. _V |
| 12 | hashsng | |- ( Z e. _V -> ( # ` { Z } ) = 1 ) |
|
| 13 | 11 12 | ax-mp | |- ( # ` { Z } ) = 1 |
| 14 | 10 13 | eqtrdi | |- ( B = { Z } -> ( # ` B ) = 1 ) |
| 15 | 14 | 3ad2ant3 | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> ( # ` B ) = 1 ) |
| 16 | 1 2 3 | c0snmgmhm | |- ( ( S e. Mnd /\ T e. Mgm /\ ( # ` B ) = 1 ) -> H e. ( T MgmHom S ) ) |
| 17 | 7 9 15 16 | syl3anc | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> H e. ( T MgmHom S ) ) |
| 18 | 3 | a1i | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> H = ( x e. B |-> .0. ) ) |
| 19 | eqidd | |- ( ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) /\ x = Z ) -> .0. = .0. ) |
|
| 20 | 11 | snid | |- Z e. { Z } |
| 21 | eleq2 | |- ( B = { Z } -> ( Z e. B <-> Z e. { Z } ) ) |
|
| 22 | 20 21 | mpbiri | |- ( B = { Z } -> Z e. B ) |
| 23 | 22 | 3ad2ant3 | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> Z e. B ) |
| 24 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 25 | 24 2 | mndidcl | |- ( S e. Mnd -> .0. e. ( Base ` S ) ) |
| 26 | 25 | 3ad2ant1 | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> .0. e. ( Base ` S ) ) |
| 27 | 18 19 23 26 | fvmptd | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> ( H ` Z ) = .0. ) |
| 28 | 17 27 | jca | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> ( H e. ( T MgmHom S ) /\ ( H ` Z ) = .0. ) ) |
| 29 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 30 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 31 | 1 24 29 30 4 2 | ismhm0 | |- ( H e. ( T MndHom S ) <-> ( ( T e. Mnd /\ S e. Mnd ) /\ ( H e. ( T MgmHom S ) /\ ( H ` Z ) = .0. ) ) ) |
| 32 | 6 28 31 | sylanbrc | |- ( ( S e. Mnd /\ T e. Mnd /\ B = { Z } ) -> H e. ( T MndHom S ) ) |