This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a monoid homomorphism, expressed by a magma homomorphism. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismhm0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| ismhm0.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | ||
| ismhm0.p | ⊢ + = ( +g ‘ 𝑆 ) | ||
| ismhm0.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | ||
| ismhm0.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| ismhm0.y | ⊢ 𝑌 = ( 0g ‘ 𝑇 ) | ||
| Assertion | ismhm0 | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismhm0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | ismhm0.c | ⊢ 𝐶 = ( Base ‘ 𝑇 ) | |
| 3 | ismhm0.p | ⊢ + = ( +g ‘ 𝑆 ) | |
| 4 | ismhm0.q | ⊢ ⨣ = ( +g ‘ 𝑇 ) | |
| 5 | ismhm0.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 6 | ismhm0.y | ⊢ 𝑌 = ( 0g ‘ 𝑇 ) | |
| 7 | 1 2 3 4 5 6 | ismhm | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 8 | df-3an | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ↔ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) | |
| 9 | mndmgm | ⊢ ( 𝑆 ∈ Mnd → 𝑆 ∈ Mgm ) | |
| 10 | mndmgm | ⊢ ( 𝑇 ∈ Mnd → 𝑇 ∈ Mgm ) | |
| 11 | 9 10 | anim12i | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 12 | 11 | biantrurd | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 13 | 1 2 3 4 | ismgmhm | ⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 14 | 12 13 | bitr4di | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) ) |
| 15 | 14 | anbi1d | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 16 | 8 15 | bitrid | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 17 | 16 | pm5.32i | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 18 | 7 17 | bitri | ⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |