This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| zrrhm.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| zrrhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | ||
| Assertion | c0snmgmhm | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrhm.b | ⊢ 𝐵 = ( Base ‘ 𝑇 ) | |
| 2 | zrrhm.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 3 | zrrhm.h | ⊢ 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) | |
| 4 | mndmgm | ⊢ ( 𝑆 ∈ Mnd → 𝑆 ∈ Mgm ) | |
| 5 | 4 | anim1i | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 6 | 5 | 3adant3 | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 7 | 6 | ancomd | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ) |
| 8 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 9 | hash1snb | ⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 1 ↔ ∃ 𝑏 𝐵 = { 𝑏 } ) ) | |
| 10 | 8 9 | ax-mp | ⊢ ( ( ♯ ‘ 𝐵 ) = 1 ↔ ∃ 𝑏 𝐵 = { 𝑏 } ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 12 | 11 2 | mndidcl | ⊢ ( 𝑆 ∈ Mnd → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ ( Base ‘ 𝑆 ) ) |
| 16 | 15 3 | fmptd | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ) |
| 17 | 3 | a1i | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 𝐻 = ( 𝑥 ∈ 𝐵 ↦ 0 ) ) |
| 18 | eqidd | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑥 = 𝑏 ) → 0 = 0 ) | |
| 19 | vsnid | ⊢ 𝑏 ∈ { 𝑏 } | |
| 20 | 19 | a1i | ⊢ ( 𝐵 = { 𝑏 } → 𝑏 ∈ { 𝑏 } ) |
| 21 | eleq2 | ⊢ ( 𝐵 = { 𝑏 } → ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ { 𝑏 } ) ) | |
| 22 | 20 21 | mpbird | ⊢ ( 𝐵 = { 𝑏 } → 𝑏 ∈ 𝐵 ) |
| 23 | 22 | adantl | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 𝑏 ∈ 𝐵 ) |
| 24 | 17 18 23 14 | fvmptd | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝐻 ‘ 𝑏 ) = 0 ) |
| 25 | simpr | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( 𝐻 ‘ 𝑏 ) = 0 ) | |
| 26 | 25 25 | oveq12d | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) = ( 0 ( +g ‘ 𝑆 ) 0 ) ) |
| 27 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 28 | 11 27 2 | mndlid | ⊢ ( ( 𝑆 ∈ Mnd ∧ 0 ∈ ( Base ‘ 𝑆 ) ) → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 29 | 12 28 | mpdan | ⊢ ( 𝑆 ∈ Mnd → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 32 | 31 | adantr | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( 0 ( +g ‘ 𝑆 ) 0 ) = 0 ) |
| 33 | simpr | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → 𝑇 ∈ Mgm ) | |
| 34 | 33 | adantr | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → 𝑇 ∈ Mgm ) |
| 35 | 34 | adantr | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → 𝑇 ∈ Mgm ) |
| 36 | simpr | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) | |
| 37 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 38 | 1 37 | mgmcl | ⊢ ( ( 𝑇 ∈ Mgm ∧ 𝑏 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 ) |
| 39 | 35 36 36 38 | syl3anc | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 ) |
| 40 | eleq2 | ⊢ ( 𝐵 = { 𝑏 } → ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 ↔ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ { 𝑏 } ) ) | |
| 41 | elsni | ⊢ ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ { 𝑏 } → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) | |
| 42 | 40 41 | biimtrdi | ⊢ ( 𝐵 = { 𝑏 } → ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → ( ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ∈ 𝐵 → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) ) |
| 45 | 39 44 | mpd | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ 𝑏 ∈ 𝐵 ) → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) |
| 46 | 23 45 | mpdan | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) = 𝑏 ) |
| 47 | 46 | fveq2d | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( 𝐻 ‘ 𝑏 ) ) |
| 48 | 47 | adantr | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( 𝐻 ‘ 𝑏 ) ) |
| 49 | 48 25 | eqtr2d | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → 0 = ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) ) |
| 50 | 26 32 49 | 3eqtrrd | ⊢ ( ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) ∧ ( 𝐻 ‘ 𝑏 ) = 0 ) → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 51 | 24 50 | mpdan | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 52 | id | ⊢ ( 𝐵 = { 𝑏 } → 𝐵 = { 𝑏 } ) | |
| 53 | 52 | raleqdv | ⊢ ( 𝐵 = { 𝑏 } → ( ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 54 | 52 53 | raleqbidv | ⊢ ( 𝐵 = { 𝑏 } → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { 𝑏 } ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 55 | 54 | adantl | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ∀ 𝑎 ∈ { 𝑏 } ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 56 | fvoveq1 | ⊢ ( 𝑎 = 𝑏 → ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) ) ) | |
| 57 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐻 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑏 ) ) | |
| 58 | 57 | oveq1d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 59 | 56 58 | eqeq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 60 | oveq2 | ⊢ ( 𝑐 = 𝑏 → ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) = ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) | |
| 61 | 60 | fveq2d | ⊢ ( 𝑐 = 𝑏 → ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) ) |
| 62 | fveq2 | ⊢ ( 𝑐 = 𝑏 → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑏 ) ) | |
| 63 | 62 | oveq2d | ⊢ ( 𝑐 = 𝑏 → ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 64 | 61 63 | eqeq12d | ⊢ ( 𝑐 = 𝑏 → ( ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 65 | 59 64 | 2ralsng | ⊢ ( ( 𝑏 ∈ V ∧ 𝑏 ∈ V ) → ( ∀ 𝑎 ∈ { 𝑏 } ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 66 | 65 | el2v | ⊢ ( ∀ 𝑎 ∈ { 𝑏 } ∀ 𝑐 ∈ { 𝑏 } ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) |
| 67 | 55 66 | bitrdi | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐻 ‘ ( 𝑏 ( +g ‘ 𝑇 ) 𝑏 ) ) = ( ( 𝐻 ‘ 𝑏 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑏 ) ) ) ) |
| 68 | 51 67 | mpbird | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) |
| 69 | 16 68 | jca | ⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) ∧ 𝐵 = { 𝑏 } ) → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 70 | 69 | ex | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( 𝐵 = { 𝑏 } → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 71 | 70 | exlimdv | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( ∃ 𝑏 𝐵 = { 𝑏 } → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 72 | 10 71 | biimtrid | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ) → ( ( ♯ ‘ 𝐵 ) = 1 → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 73 | 72 | 3impia | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) |
| 74 | 1 11 37 27 | ismgmhm | ⊢ ( 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ↔ ( ( 𝑇 ∈ Mgm ∧ 𝑆 ∈ Mgm ) ∧ ( 𝐻 : 𝐵 ⟶ ( Base ‘ 𝑆 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝐻 ‘ ( 𝑎 ( +g ‘ 𝑇 ) 𝑐 ) ) = ( ( 𝐻 ‘ 𝑎 ) ( +g ‘ 𝑆 ) ( 𝐻 ‘ 𝑐 ) ) ) ) ) |
| 75 | 7 73 74 | sylanbrc | ⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ ( ♯ ‘ 𝐵 ) = 1 ) → 𝐻 ∈ ( 𝑇 MgmHom 𝑆 ) ) |