This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant mapping to zero is a magma homomorphism from a magma with one element to any monoid. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrrhm.b | |- B = ( Base ` T ) |
|
| zrrhm.0 | |- .0. = ( 0g ` S ) |
||
| zrrhm.h | |- H = ( x e. B |-> .0. ) |
||
| Assertion | c0snmgmhm | |- ( ( S e. Mnd /\ T e. Mgm /\ ( # ` B ) = 1 ) -> H e. ( T MgmHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrrhm.b | |- B = ( Base ` T ) |
|
| 2 | zrrhm.0 | |- .0. = ( 0g ` S ) |
|
| 3 | zrrhm.h | |- H = ( x e. B |-> .0. ) |
|
| 4 | mndmgm | |- ( S e. Mnd -> S e. Mgm ) |
|
| 5 | 4 | anim1i | |- ( ( S e. Mnd /\ T e. Mgm ) -> ( S e. Mgm /\ T e. Mgm ) ) |
| 6 | 5 | 3adant3 | |- ( ( S e. Mnd /\ T e. Mgm /\ ( # ` B ) = 1 ) -> ( S e. Mgm /\ T e. Mgm ) ) |
| 7 | 6 | ancomd | |- ( ( S e. Mnd /\ T e. Mgm /\ ( # ` B ) = 1 ) -> ( T e. Mgm /\ S e. Mgm ) ) |
| 8 | 1 | fvexi | |- B e. _V |
| 9 | hash1snb | |- ( B e. _V -> ( ( # ` B ) = 1 <-> E. b B = { b } ) ) |
|
| 10 | 8 9 | ax-mp | |- ( ( # ` B ) = 1 <-> E. b B = { b } ) |
| 11 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 12 | 11 2 | mndidcl | |- ( S e. Mnd -> .0. e. ( Base ` S ) ) |
| 13 | 12 | adantr | |- ( ( S e. Mnd /\ T e. Mgm ) -> .0. e. ( Base ` S ) ) |
| 14 | 13 | adantr | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> .0. e. ( Base ` S ) ) |
| 15 | 14 | adantr | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ x e. B ) -> .0. e. ( Base ` S ) ) |
| 16 | 15 3 | fmptd | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> H : B --> ( Base ` S ) ) |
| 17 | 3 | a1i | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> H = ( x e. B |-> .0. ) ) |
| 18 | eqidd | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ x = b ) -> .0. = .0. ) |
|
| 19 | vsnid | |- b e. { b } |
|
| 20 | 19 | a1i | |- ( B = { b } -> b e. { b } ) |
| 21 | eleq2 | |- ( B = { b } -> ( b e. B <-> b e. { b } ) ) |
|
| 22 | 20 21 | mpbird | |- ( B = { b } -> b e. B ) |
| 23 | 22 | adantl | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> b e. B ) |
| 24 | 17 18 23 14 | fvmptd | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( H ` b ) = .0. ) |
| 25 | simpr | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ ( H ` b ) = .0. ) -> ( H ` b ) = .0. ) |
|
| 26 | 25 25 | oveq12d | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ ( H ` b ) = .0. ) -> ( ( H ` b ) ( +g ` S ) ( H ` b ) ) = ( .0. ( +g ` S ) .0. ) ) |
| 27 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 28 | 11 27 2 | mndlid | |- ( ( S e. Mnd /\ .0. e. ( Base ` S ) ) -> ( .0. ( +g ` S ) .0. ) = .0. ) |
| 29 | 12 28 | mpdan | |- ( S e. Mnd -> ( .0. ( +g ` S ) .0. ) = .0. ) |
| 30 | 29 | adantr | |- ( ( S e. Mnd /\ T e. Mgm ) -> ( .0. ( +g ` S ) .0. ) = .0. ) |
| 31 | 30 | adantr | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( .0. ( +g ` S ) .0. ) = .0. ) |
| 32 | 31 | adantr | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ ( H ` b ) = .0. ) -> ( .0. ( +g ` S ) .0. ) = .0. ) |
| 33 | simpr | |- ( ( S e. Mnd /\ T e. Mgm ) -> T e. Mgm ) |
|
| 34 | 33 | adantr | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> T e. Mgm ) |
| 35 | 34 | adantr | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ b e. B ) -> T e. Mgm ) |
| 36 | simpr | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ b e. B ) -> b e. B ) |
|
| 37 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 38 | 1 37 | mgmcl | |- ( ( T e. Mgm /\ b e. B /\ b e. B ) -> ( b ( +g ` T ) b ) e. B ) |
| 39 | 35 36 36 38 | syl3anc | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ b e. B ) -> ( b ( +g ` T ) b ) e. B ) |
| 40 | eleq2 | |- ( B = { b } -> ( ( b ( +g ` T ) b ) e. B <-> ( b ( +g ` T ) b ) e. { b } ) ) |
|
| 41 | elsni | |- ( ( b ( +g ` T ) b ) e. { b } -> ( b ( +g ` T ) b ) = b ) |
|
| 42 | 40 41 | biimtrdi | |- ( B = { b } -> ( ( b ( +g ` T ) b ) e. B -> ( b ( +g ` T ) b ) = b ) ) |
| 43 | 42 | adantl | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( ( b ( +g ` T ) b ) e. B -> ( b ( +g ` T ) b ) = b ) ) |
| 44 | 43 | adantr | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ b e. B ) -> ( ( b ( +g ` T ) b ) e. B -> ( b ( +g ` T ) b ) = b ) ) |
| 45 | 39 44 | mpd | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ b e. B ) -> ( b ( +g ` T ) b ) = b ) |
| 46 | 23 45 | mpdan | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( b ( +g ` T ) b ) = b ) |
| 47 | 46 | fveq2d | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( H ` ( b ( +g ` T ) b ) ) = ( H ` b ) ) |
| 48 | 47 | adantr | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ ( H ` b ) = .0. ) -> ( H ` ( b ( +g ` T ) b ) ) = ( H ` b ) ) |
| 49 | 48 25 | eqtr2d | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ ( H ` b ) = .0. ) -> .0. = ( H ` ( b ( +g ` T ) b ) ) ) |
| 50 | 26 32 49 | 3eqtrrd | |- ( ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) /\ ( H ` b ) = .0. ) -> ( H ` ( b ( +g ` T ) b ) ) = ( ( H ` b ) ( +g ` S ) ( H ` b ) ) ) |
| 51 | 24 50 | mpdan | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( H ` ( b ( +g ` T ) b ) ) = ( ( H ` b ) ( +g ` S ) ( H ` b ) ) ) |
| 52 | id | |- ( B = { b } -> B = { b } ) |
|
| 53 | 52 | raleqdv | |- ( B = { b } -> ( A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) <-> A. c e. { b } ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) |
| 54 | 52 53 | raleqbidv | |- ( B = { b } -> ( A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) <-> A. a e. { b } A. c e. { b } ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) |
| 55 | 54 | adantl | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) <-> A. a e. { b } A. c e. { b } ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) |
| 56 | fvoveq1 | |- ( a = b -> ( H ` ( a ( +g ` T ) c ) ) = ( H ` ( b ( +g ` T ) c ) ) ) |
|
| 57 | fveq2 | |- ( a = b -> ( H ` a ) = ( H ` b ) ) |
|
| 58 | 57 | oveq1d | |- ( a = b -> ( ( H ` a ) ( +g ` S ) ( H ` c ) ) = ( ( H ` b ) ( +g ` S ) ( H ` c ) ) ) |
| 59 | 56 58 | eqeq12d | |- ( a = b -> ( ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) <-> ( H ` ( b ( +g ` T ) c ) ) = ( ( H ` b ) ( +g ` S ) ( H ` c ) ) ) ) |
| 60 | oveq2 | |- ( c = b -> ( b ( +g ` T ) c ) = ( b ( +g ` T ) b ) ) |
|
| 61 | 60 | fveq2d | |- ( c = b -> ( H ` ( b ( +g ` T ) c ) ) = ( H ` ( b ( +g ` T ) b ) ) ) |
| 62 | fveq2 | |- ( c = b -> ( H ` c ) = ( H ` b ) ) |
|
| 63 | 62 | oveq2d | |- ( c = b -> ( ( H ` b ) ( +g ` S ) ( H ` c ) ) = ( ( H ` b ) ( +g ` S ) ( H ` b ) ) ) |
| 64 | 61 63 | eqeq12d | |- ( c = b -> ( ( H ` ( b ( +g ` T ) c ) ) = ( ( H ` b ) ( +g ` S ) ( H ` c ) ) <-> ( H ` ( b ( +g ` T ) b ) ) = ( ( H ` b ) ( +g ` S ) ( H ` b ) ) ) ) |
| 65 | 59 64 | 2ralsng | |- ( ( b e. _V /\ b e. _V ) -> ( A. a e. { b } A. c e. { b } ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) <-> ( H ` ( b ( +g ` T ) b ) ) = ( ( H ` b ) ( +g ` S ) ( H ` b ) ) ) ) |
| 66 | 65 | el2v | |- ( A. a e. { b } A. c e. { b } ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) <-> ( H ` ( b ( +g ` T ) b ) ) = ( ( H ` b ) ( +g ` S ) ( H ` b ) ) ) |
| 67 | 55 66 | bitrdi | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) <-> ( H ` ( b ( +g ` T ) b ) ) = ( ( H ` b ) ( +g ` S ) ( H ` b ) ) ) ) |
| 68 | 51 67 | mpbird | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) |
| 69 | 16 68 | jca | |- ( ( ( S e. Mnd /\ T e. Mgm ) /\ B = { b } ) -> ( H : B --> ( Base ` S ) /\ A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) |
| 70 | 69 | ex | |- ( ( S e. Mnd /\ T e. Mgm ) -> ( B = { b } -> ( H : B --> ( Base ` S ) /\ A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) ) |
| 71 | 70 | exlimdv | |- ( ( S e. Mnd /\ T e. Mgm ) -> ( E. b B = { b } -> ( H : B --> ( Base ` S ) /\ A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) ) |
| 72 | 10 71 | biimtrid | |- ( ( S e. Mnd /\ T e. Mgm ) -> ( ( # ` B ) = 1 -> ( H : B --> ( Base ` S ) /\ A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) ) |
| 73 | 72 | 3impia | |- ( ( S e. Mnd /\ T e. Mgm /\ ( # ` B ) = 1 ) -> ( H : B --> ( Base ` S ) /\ A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) |
| 74 | 1 11 37 27 | ismgmhm | |- ( H e. ( T MgmHom S ) <-> ( ( T e. Mgm /\ S e. Mgm ) /\ ( H : B --> ( Base ` S ) /\ A. a e. B A. c e. B ( H ` ( a ( +g ` T ) c ) ) = ( ( H ` a ) ( +g ` S ) ( H ` c ) ) ) ) ) |
| 75 | 7 73 74 | sylanbrc | |- ( ( S e. Mnd /\ T e. Mgm /\ ( # ` B ) = 1 ) -> H e. ( T MgmHom S ) ) |