This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a binary relation holds for the result of an operation which is a function value, the involved classes are sets. (Contributed by AV, 31-Dec-2020) (Revised by AV, 16-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bropfvvvv.o | ⊢ 𝑂 = ( 𝑎 ∈ 𝑈 ↦ ( 𝑏 ∈ 𝑉 , 𝑐 ∈ 𝑊 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜑 } ) ) | |
| bropfvvvv.oo | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } ) | ||
| bropfvvvv.s | ⊢ ( 𝑎 = 𝐴 → 𝑉 = 𝑆 ) | ||
| bropfvvvv.t | ⊢ ( 𝑎 = 𝐴 → 𝑊 = 𝑇 ) | ||
| bropfvvvv.p | ⊢ ( 𝑎 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | bropfvvvv | ⊢ ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bropfvvvv.o | ⊢ 𝑂 = ( 𝑎 ∈ 𝑈 ↦ ( 𝑏 ∈ 𝑉 , 𝑐 ∈ 𝑊 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜑 } ) ) | |
| 2 | bropfvvvv.oo | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } ) | |
| 3 | bropfvvvv.s | ⊢ ( 𝑎 = 𝐴 → 𝑉 = 𝑆 ) | |
| 4 | bropfvvvv.t | ⊢ ( 𝑎 = 𝐴 → 𝑊 = 𝑇 ) | |
| 5 | bropfvvvv.p | ⊢ ( 𝑎 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 6 | brovpreldm | ⊢ ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) ) | |
| 7 | 5 | opabbidv | ⊢ ( 𝑎 = 𝐴 → { 〈 𝑑 , 𝑒 〉 ∣ 𝜑 } = { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) |
| 8 | 3 4 7 | mpoeq123dv | ⊢ ( 𝑎 = 𝐴 → ( 𝑏 ∈ 𝑉 , 𝑐 ∈ 𝑊 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜑 } ) = ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ) |
| 9 | 8 1 | fvmptg | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ) |
| 10 | 9 | dmeqd | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → dom ( 𝑂 ‘ 𝐴 ) = dom ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ) |
| 11 | 10 | eleq2d | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) ↔ 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ) ) |
| 12 | dmoprabss | ⊢ dom { 〈 〈 𝑏 , 𝑐 〉 , 𝑧 〉 ∣ ( ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑇 ) ∧ 𝑧 = { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) } ⊆ ( 𝑆 × 𝑇 ) | |
| 13 | 12 | sseli | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom { 〈 〈 𝑏 , 𝑐 〉 , 𝑧 〉 ∣ ( ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑇 ) ∧ 𝑧 = { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) } → 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) ) |
| 14 | 1 2 | bropfvvvvlem | ⊢ ( ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) ∧ 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) |
| 15 | 14 | ex | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 16 | 13 15 | syl | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom { 〈 〈 𝑏 , 𝑐 〉 , 𝑧 〉 ∣ ( ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑇 ) ∧ 𝑧 = { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) } → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 17 | df-mpo | ⊢ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) = { 〈 〈 𝑏 , 𝑐 〉 , 𝑧 〉 ∣ ( ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑇 ) ∧ 𝑧 = { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) } | |
| 18 | 17 | dmeqi | ⊢ dom ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) = dom { 〈 〈 𝑏 , 𝑐 〉 , 𝑧 〉 ∣ ( ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑇 ) ∧ 𝑧 = { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) } |
| 19 | 16 18 | eleq2s | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 20 | 11 19 | biimtrdi | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 21 | 20 | com23 | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 22 | 21 | a1d | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 23 | ianor | ⊢ ( ¬ ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) ↔ ( ¬ 𝐴 ∈ 𝑈 ∨ ¬ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) ) | |
| 24 | 1 | fvmptndm | ⊢ ( ¬ 𝐴 ∈ 𝑈 → ( 𝑂 ‘ 𝐴 ) = ∅ ) |
| 25 | 24 | dmeqd | ⊢ ( ¬ 𝐴 ∈ 𝑈 → dom ( 𝑂 ‘ 𝐴 ) = dom ∅ ) |
| 26 | 25 | eleq2d | ⊢ ( ¬ 𝐴 ∈ 𝑈 → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) ↔ 〈 𝐵 , 𝐶 〉 ∈ dom ∅ ) ) |
| 27 | dm0 | ⊢ dom ∅ = ∅ | |
| 28 | 27 | eleq2i | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ dom ∅ ↔ 〈 𝐵 , 𝐶 〉 ∈ ∅ ) |
| 29 | 26 28 | bitrdi | ⊢ ( ¬ 𝐴 ∈ 𝑈 → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) ↔ 〈 𝐵 , 𝐶 〉 ∈ ∅ ) ) |
| 30 | noel | ⊢ ¬ 〈 𝐵 , 𝐶 〉 ∈ ∅ | |
| 31 | 30 | pm2.21i | ⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 32 | 29 31 | biimtrdi | ⊢ ( ¬ 𝐴 ∈ 𝑈 → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 33 | 32 | a1d | ⊢ ( ¬ 𝐴 ∈ 𝑈 → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 34 | notnotb | ⊢ ( 𝐴 ∈ 𝑈 ↔ ¬ ¬ 𝐴 ∈ 𝑈 ) | |
| 35 | elex | ⊢ ( 𝑆 ∈ 𝑋 → 𝑆 ∈ V ) | |
| 36 | elex | ⊢ ( 𝑇 ∈ 𝑌 → 𝑇 ∈ V ) | |
| 37 | 35 36 | anim12i | ⊢ ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
| 39 | mpoexga | ⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) | |
| 40 | 38 39 | syl | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) ) → ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) |
| 41 | 40 | pm2.24d | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) ) → ( ¬ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 42 | 41 | ex | ⊢ ( 𝐴 ∈ 𝑈 → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( ¬ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) ) |
| 43 | 42 | com23 | ⊢ ( 𝐴 ∈ 𝑈 → ( ¬ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) ) |
| 44 | 34 43 | sylbir | ⊢ ( ¬ ¬ 𝐴 ∈ 𝑈 → ( ¬ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) ) |
| 45 | 44 | imp | ⊢ ( ( ¬ ¬ 𝐴 ∈ 𝑈 ∧ ¬ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 46 | 33 45 | jaoi3 | ⊢ ( ( ¬ 𝐴 ∈ 𝑈 ∨ ¬ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 47 | 23 46 | sylbi | ⊢ ( ¬ ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 48 | 47 | com34 | ⊢ ( ¬ ( 𝐴 ∈ 𝑈 ∧ ( 𝑏 ∈ 𝑆 , 𝑐 ∈ 𝑇 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜓 } ) ∈ V ) → ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 49 | 22 48 | pm2.61i | ⊢ ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 〈 𝐵 , 𝐶 〉 ∈ dom ( 𝑂 ‘ 𝐴 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 50 | 6 49 | mpdi | ⊢ ( ( 𝑆 ∈ 𝑋 ∧ 𝑇 ∈ 𝑌 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |