This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all the values of the mapping are subsets of a class X , then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ovmptss.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| Assertion | ovmptss | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 → ( 𝐸 𝐹 𝐺 ) ⊆ 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmptss.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | mpomptsx | ⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) | |
| 3 | 1 2 | eqtri | ⊢ 𝐹 = ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ↦ ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
| 4 | 3 | fvmptss | ⊢ ( ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 → ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) ⊆ 𝑋 ) |
| 5 | vex | ⊢ 𝑢 ∈ V | |
| 6 | vex | ⊢ 𝑣 ∈ V | |
| 7 | 5 6 | op1std | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 1st ‘ 𝑧 ) = 𝑢 ) |
| 8 | 7 | csbeq1d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ) |
| 9 | 5 6 | op2ndd | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 2nd ‘ 𝑧 ) = 𝑣 ) |
| 10 | 9 | csbeq1d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 11 | 10 | csbeq2dv | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ 𝑢 / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 12 | 8 11 | eqtrd | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) |
| 13 | 12 | sseq1d | ⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 14 | 13 | raliunxp | ⊢ ( ∀ 𝑧 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 15 | nfcv | ⊢ Ⅎ 𝑢 ( { 𝑥 } × 𝐵 ) | |
| 16 | nfcv | ⊢ Ⅎ 𝑥 { 𝑢 } | |
| 17 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐵 | |
| 18 | 16 17 | nfxp | ⊢ Ⅎ 𝑥 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 19 | sneq | ⊢ ( 𝑥 = 𝑢 → { 𝑥 } = { 𝑢 } ) | |
| 20 | csbeq1a | ⊢ ( 𝑥 = 𝑢 → 𝐵 = ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) | |
| 21 | 19 20 | xpeq12d | ⊢ ( 𝑥 = 𝑢 → ( { 𝑥 } × 𝐵 ) = ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ) |
| 22 | 15 18 21 | cbviun | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) = ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) |
| 23 | 22 | raleqi | ⊢ ( ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑧 ∈ ∪ 𝑢 ∈ 𝐴 ( { 𝑢 } × ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 24 | nfv | ⊢ Ⅎ 𝑢 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 | |
| 25 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 | |
| 26 | nfcv | ⊢ Ⅎ 𝑥 𝑋 | |
| 27 | 25 26 | nfss | ⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
| 28 | 17 27 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
| 29 | nfv | ⊢ Ⅎ 𝑣 𝐶 ⊆ 𝑋 | |
| 30 | nfcsb1v | ⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 | |
| 31 | nfcv | ⊢ Ⅎ 𝑦 𝑋 | |
| 32 | 30 31 | nfss | ⊢ Ⅎ 𝑦 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 |
| 33 | csbeq1a | ⊢ ( 𝑦 = 𝑣 → 𝐶 = ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) | |
| 34 | 33 | sseq1d | ⊢ ( 𝑦 = 𝑣 → ( 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 35 | 29 32 34 | cbvralw | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ 𝐵 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 36 | csbeq1a | ⊢ ( 𝑥 = 𝑢 → ⦋ 𝑣 / 𝑦 ⦌ 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ) | |
| 37 | 36 | sseq1d | ⊢ ( 𝑥 = 𝑢 → ( ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 38 | 20 37 | raleqbidv | ⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑣 ∈ 𝐵 ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 39 | 35 38 | bitrid | ⊢ ( 𝑥 = 𝑢 → ( ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) ) |
| 40 | 24 28 39 | cbvralw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑢 ∈ 𝐴 ∀ 𝑣 ∈ ⦋ 𝑢 / 𝑥 ⦌ 𝐵 ⦋ 𝑢 / 𝑥 ⦌ ⦋ 𝑣 / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 41 | 14 23 40 | 3bitr4ri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 ↔ ∀ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐵 ) ⦋ ( 1st ‘ 𝑧 ) / 𝑥 ⦌ ⦋ ( 2nd ‘ 𝑧 ) / 𝑦 ⦌ 𝐶 ⊆ 𝑋 ) |
| 42 | df-ov | ⊢ ( 𝐸 𝐹 𝐺 ) = ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) | |
| 43 | 42 | sseq1i | ⊢ ( ( 𝐸 𝐹 𝐺 ) ⊆ 𝑋 ↔ ( 𝐹 ‘ 〈 𝐸 , 𝐺 〉 ) ⊆ 𝑋 ) |
| 44 | 4 41 43 | 3imtr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ⊆ 𝑋 → ( 𝐸 𝐹 𝐺 ) ⊆ 𝑋 ) |