This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of brfi1ind , which does not use brfi1uzind . (Contributed by Alexander van der Vekens, 7-Jan-2018) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brfi1ind.r | ⊢ Rel 𝐺 | |
| brfi1ind.f | ⊢ 𝐹 ∈ V | ||
| brfi1ind.1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) | ||
| brfi1ind.2 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) | ||
| brfi1ind.3 | ⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) | ||
| brfi1ind.4 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) | ||
| brfi1ind.base | ⊢ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) | ||
| brfi1ind.step | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) | ||
| Assertion | brfi1indALT | ⊢ ( ( 𝑉 𝐺 𝐸 ∧ 𝑉 ∈ Fin ) → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brfi1ind.r | ⊢ Rel 𝐺 | |
| 2 | brfi1ind.f | ⊢ 𝐹 ∈ V | |
| 3 | brfi1ind.1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) | |
| 4 | brfi1ind.2 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) | |
| 5 | brfi1ind.3 | ⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) | |
| 6 | brfi1ind.4 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) | |
| 7 | brfi1ind.base | ⊢ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) | |
| 8 | brfi1ind.step | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) | |
| 9 | hashcl | ⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) | |
| 10 | dfclel | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 ↔ ∃ 𝑛 ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) ) | |
| 11 | eqeq2 | ⊢ ( 𝑥 = 0 → ( ( ♯ ‘ 𝑣 ) = 𝑥 ↔ ( ♯ ‘ 𝑣 ) = 0 ) ) | |
| 12 | 11 | anbi2d | ⊢ ( 𝑥 = 0 → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( 𝑥 = 0 → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) ) ) |
| 14 | 13 | 2albidv | ⊢ ( 𝑥 = 0 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) ) ) |
| 15 | eqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝑣 ) = 𝑥 ↔ ( ♯ ‘ 𝑣 ) = 𝑦 ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) ) ) |
| 17 | 16 | imbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) ) ) |
| 18 | 17 | 2albidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) ) ) |
| 19 | eqeq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ♯ ‘ 𝑣 ) = 𝑥 ↔ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) | |
| 20 | 19 | anbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ) |
| 21 | 20 | imbi1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) ) |
| 22 | 21 | 2albidv | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) ) |
| 23 | eqeq2 | ⊢ ( 𝑥 = 𝑛 → ( ( ♯ ‘ 𝑣 ) = 𝑥 ↔ ( ♯ ‘ 𝑣 ) = 𝑛 ) ) | |
| 24 | 23 | anbi2d | ⊢ ( 𝑥 = 𝑛 → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) ↔ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) ) ) |
| 25 | 24 | imbi1d | ⊢ ( 𝑥 = 𝑛 → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) ) ) |
| 26 | 25 | 2albidv | ⊢ ( 𝑥 = 𝑛 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑥 ) → 𝜓 ) ↔ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) ) ) |
| 27 | 7 | gen2 | ⊢ ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 0 ) → 𝜓 ) |
| 28 | breq12 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝑣 𝐺 𝑒 ↔ 𝑤 𝐺 𝑓 ) ) | |
| 29 | fveqeq2 | ⊢ ( 𝑣 = 𝑤 → ( ( ♯ ‘ 𝑣 ) = 𝑦 ↔ ( ♯ ‘ 𝑤 ) = 𝑦 ) ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( ♯ ‘ 𝑣 ) = 𝑦 ↔ ( ♯ ‘ 𝑤 ) = 𝑦 ) ) |
| 31 | 28 30 | anbi12d | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) ↔ ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) ) ) |
| 32 | 31 4 | imbi12d | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) ↔ ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ) ) |
| 33 | 32 | cbval2vw | ⊢ ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) ↔ ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ) |
| 34 | nn0p1gt0 | ⊢ ( 𝑦 ∈ ℕ0 → 0 < ( 𝑦 + 1 ) ) | |
| 35 | 34 | adantr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 0 < ( 𝑦 + 1 ) ) |
| 36 | simpr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) | |
| 37 | 35 36 | breqtrrd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 38 | 37 | adantrl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) → 0 < ( ♯ ‘ 𝑣 ) ) |
| 39 | hashgt0elex | ⊢ ( ( 𝑣 ∈ V ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ∃ 𝑛 𝑛 ∈ 𝑣 ) | |
| 40 | vex | ⊢ 𝑣 ∈ V | |
| 41 | simpr | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑛 ∈ 𝑣 ) | |
| 42 | simpl | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → 𝑦 ∈ ℕ0 ) | |
| 43 | hashdifsnp1 | ⊢ ( ( 𝑣 ∈ V ∧ 𝑛 ∈ 𝑣 ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) | |
| 44 | 40 41 42 43 | mp3an2i | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 45 | 44 | imp | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) |
| 46 | peano2nn0 | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) | |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 48 | 47 | ad2antlr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 49 | simpr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → 𝑣 𝐺 𝑒 ) | |
| 50 | simplrr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) | |
| 51 | simprlr | ⊢ ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) → 𝑛 ∈ 𝑣 ) | |
| 52 | 51 | adantr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → 𝑛 ∈ 𝑣 ) |
| 53 | 49 50 52 | 3jca | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) |
| 54 | 48 53 | jca | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
| 55 | 40 | difexi | ⊢ ( 𝑣 ∖ { 𝑛 } ) ∈ V |
| 56 | breq12 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝑤 𝐺 𝑓 ↔ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ) | |
| 57 | fveqeq2 | ⊢ ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) → ( ( ♯ ‘ 𝑤 ) = 𝑦 ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) | |
| 58 | 57 | adantr | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( ♯ ‘ 𝑤 ) = 𝑦 ↔ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) |
| 59 | 56 58 | anbi12d | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) ↔ ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) ) ) |
| 60 | 59 6 | imbi12d | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ↔ ( ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) ) |
| 61 | 60 | spc2gv | ⊢ ( ( ( 𝑣 ∖ { 𝑛 } ) ∈ V ∧ 𝐹 ∈ V ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → ( ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) ) |
| 62 | 55 2 61 | mp2an | ⊢ ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → ( ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ∧ ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 ) → 𝜒 ) ) |
| 63 | 62 | expdimp | ⊢ ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜒 ) ) |
| 64 | 63 | ad2antrr | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜒 ) ) |
| 65 | 54 64 8 | syl6an | ⊢ ( ( ( ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ∧ ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 ) ∧ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) ∧ 𝑣 𝐺 𝑒 ) → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜓 ) ) |
| 66 | 65 | exp41 | ⊢ ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( 𝑣 𝐺 𝑒 → ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → 𝜓 ) ) ) ) ) |
| 67 | 66 | com15 | ⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 68 | 67 | com23 | ⊢ ( ( ♯ ‘ ( 𝑣 ∖ { 𝑛 } ) ) = 𝑦 → ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 69 | 45 68 | mpcom | ⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 70 | 69 | ex | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 71 | 70 | com23 | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 72 | 71 | ex | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑛 ∈ 𝑣 → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 73 | 72 | com15 | ⊢ ( 𝑣 𝐺 𝑒 → ( 𝑛 ∈ 𝑣 → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 74 | 73 | imp | ⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( ( 𝑣 ∖ { 𝑛 } ) 𝐺 𝐹 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 75 | 5 74 | mpd | ⊢ ( ( 𝑣 𝐺 𝑒 ∧ 𝑛 ∈ 𝑣 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 76 | 75 | ex | ⊢ ( 𝑣 𝐺 𝑒 → ( 𝑛 ∈ 𝑣 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 77 | 76 | com4l | ⊢ ( 𝑛 ∈ 𝑣 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 78 | 77 | exlimiv | ⊢ ( ∃ 𝑛 𝑛 ∈ 𝑣 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 79 | 39 78 | syl | ⊢ ( ( 𝑣 ∈ V ∧ 0 < ( ♯ ‘ 𝑣 ) ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 80 | 79 | ex | ⊢ ( 𝑣 ∈ V → ( 0 < ( ♯ ‘ 𝑣 ) → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 𝑣 𝐺 𝑒 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 81 | 80 | com25 | ⊢ ( 𝑣 ∈ V → ( 𝑣 𝐺 𝑒 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) ) |
| 82 | 81 | elv | ⊢ ( 𝑣 𝐺 𝑒 → ( ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) ) |
| 83 | 82 | imp | ⊢ ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → ( 𝑦 ∈ ℕ0 → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) ) |
| 84 | 83 | impcom | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) → ( 0 < ( ♯ ‘ 𝑣 ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) ) |
| 85 | 38 84 | mpd | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) ) → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → 𝜓 ) ) |
| 86 | 85 | impancom | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ) → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) |
| 87 | 86 | alrimivv | ⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) ) → ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) |
| 88 | 87 | ex | ⊢ ( 𝑦 ∈ ℕ0 → ( ∀ 𝑤 ∀ 𝑓 ( ( 𝑤 𝐺 𝑓 ∧ ( ♯ ‘ 𝑤 ) = 𝑦 ) → 𝜃 ) → ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) ) |
| 89 | 33 88 | biimtrid | ⊢ ( 𝑦 ∈ ℕ0 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑦 ) → 𝜓 ) → ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ) → 𝜓 ) ) ) |
| 90 | 14 18 22 26 27 89 | nn0ind | ⊢ ( 𝑛 ∈ ℕ0 → ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) ) |
| 91 | 1 | brrelex12i | ⊢ ( 𝑉 𝐺 𝐸 → ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) ) |
| 92 | breq12 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝑣 𝐺 𝑒 ↔ 𝑉 𝐺 𝐸 ) ) | |
| 93 | fveqeq2 | ⊢ ( 𝑣 = 𝑉 → ( ( ♯ ‘ 𝑣 ) = 𝑛 ↔ ( ♯ ‘ 𝑉 ) = 𝑛 ) ) | |
| 94 | 93 | adantr | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( ♯ ‘ 𝑣 ) = 𝑛 ↔ ( ♯ ‘ 𝑉 ) = 𝑛 ) ) |
| 95 | 92 94 | anbi12d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) ↔ ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) ) ) |
| 96 | 95 3 | imbi12d | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) ↔ ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → 𝜑 ) ) ) |
| 97 | 96 | spc2gv | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → 𝜑 ) ) ) |
| 98 | 97 | com23 | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → 𝜑 ) ) ) |
| 99 | 98 | expd | ⊢ ( ( 𝑉 ∈ V ∧ 𝐸 ∈ V ) → ( 𝑉 𝐺 𝐸 → ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → 𝜑 ) ) ) ) |
| 100 | 91 99 | mpcom | ⊢ ( 𝑉 𝐺 𝐸 → ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → 𝜑 ) ) ) |
| 101 | 100 | imp | ⊢ ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → ( ∀ 𝑣 ∀ 𝑒 ( ( 𝑣 𝐺 𝑒 ∧ ( ♯ ‘ 𝑣 ) = 𝑛 ) → 𝜓 ) → 𝜑 ) ) |
| 102 | 90 101 | syl5 | ⊢ ( ( 𝑉 𝐺 𝐸 ∧ ( ♯ ‘ 𝑉 ) = 𝑛 ) → ( 𝑛 ∈ ℕ0 → 𝜑 ) ) |
| 103 | 102 | expcom | ⊢ ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( 𝑉 𝐺 𝐸 → ( 𝑛 ∈ ℕ0 → 𝜑 ) ) ) |
| 104 | 103 | com23 | ⊢ ( ( ♯ ‘ 𝑉 ) = 𝑛 → ( 𝑛 ∈ ℕ0 → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) ) |
| 105 | 104 | eqcoms | ⊢ ( 𝑛 = ( ♯ ‘ 𝑉 ) → ( 𝑛 ∈ ℕ0 → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) ) |
| 106 | 105 | imp | ⊢ ( ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) |
| 107 | 106 | exlimiv | ⊢ ( ∃ 𝑛 ( 𝑛 = ( ♯ ‘ 𝑉 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) |
| 108 | 10 107 | sylbi | ⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) |
| 109 | 9 108 | syl | ⊢ ( 𝑉 ∈ Fin → ( 𝑉 𝐺 𝐸 → 𝜑 ) ) |
| 110 | 109 | impcom | ⊢ ( ( 𝑉 𝐺 𝐸 ∧ 𝑉 ∈ Fin ) → 𝜑 ) |