This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of brfi1ind , which does not use brfi1uzind . (Contributed by Alexander van der Vekens, 7-Jan-2018) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brfi1ind.r | |- Rel G |
|
| brfi1ind.f | |- F e. _V |
||
| brfi1ind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
||
| brfi1ind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
||
| brfi1ind.3 | |- ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F ) |
||
| brfi1ind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
||
| brfi1ind.base | |- ( ( v G e /\ ( # ` v ) = 0 ) -> ps ) |
||
| brfi1ind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
||
| Assertion | brfi1indALT | |- ( ( V G E /\ V e. Fin ) -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brfi1ind.r | |- Rel G |
|
| 2 | brfi1ind.f | |- F e. _V |
|
| 3 | brfi1ind.1 | |- ( ( v = V /\ e = E ) -> ( ps <-> ph ) ) |
|
| 4 | brfi1ind.2 | |- ( ( v = w /\ e = f ) -> ( ps <-> th ) ) |
|
| 5 | brfi1ind.3 | |- ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F ) |
|
| 6 | brfi1ind.4 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) ) |
|
| 7 | brfi1ind.base | |- ( ( v G e /\ ( # ` v ) = 0 ) -> ps ) |
|
| 8 | brfi1ind.step | |- ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps ) |
|
| 9 | hashcl | |- ( V e. Fin -> ( # ` V ) e. NN0 ) |
|
| 10 | dfclel | |- ( ( # ` V ) e. NN0 <-> E. n ( n = ( # ` V ) /\ n e. NN0 ) ) |
|
| 11 | eqeq2 | |- ( x = 0 -> ( ( # ` v ) = x <-> ( # ` v ) = 0 ) ) |
|
| 12 | 11 | anbi2d | |- ( x = 0 -> ( ( v G e /\ ( # ` v ) = x ) <-> ( v G e /\ ( # ` v ) = 0 ) ) ) |
| 13 | 12 | imbi1d | |- ( x = 0 -> ( ( ( v G e /\ ( # ` v ) = x ) -> ps ) <-> ( ( v G e /\ ( # ` v ) = 0 ) -> ps ) ) ) |
| 14 | 13 | 2albidv | |- ( x = 0 -> ( A. v A. e ( ( v G e /\ ( # ` v ) = x ) -> ps ) <-> A. v A. e ( ( v G e /\ ( # ` v ) = 0 ) -> ps ) ) ) |
| 15 | eqeq2 | |- ( x = y -> ( ( # ` v ) = x <-> ( # ` v ) = y ) ) |
|
| 16 | 15 | anbi2d | |- ( x = y -> ( ( v G e /\ ( # ` v ) = x ) <-> ( v G e /\ ( # ` v ) = y ) ) ) |
| 17 | 16 | imbi1d | |- ( x = y -> ( ( ( v G e /\ ( # ` v ) = x ) -> ps ) <-> ( ( v G e /\ ( # ` v ) = y ) -> ps ) ) ) |
| 18 | 17 | 2albidv | |- ( x = y -> ( A. v A. e ( ( v G e /\ ( # ` v ) = x ) -> ps ) <-> A. v A. e ( ( v G e /\ ( # ` v ) = y ) -> ps ) ) ) |
| 19 | eqeq2 | |- ( x = ( y + 1 ) -> ( ( # ` v ) = x <-> ( # ` v ) = ( y + 1 ) ) ) |
|
| 20 | 19 | anbi2d | |- ( x = ( y + 1 ) -> ( ( v G e /\ ( # ` v ) = x ) <-> ( v G e /\ ( # ` v ) = ( y + 1 ) ) ) ) |
| 21 | 20 | imbi1d | |- ( x = ( y + 1 ) -> ( ( ( v G e /\ ( # ` v ) = x ) -> ps ) <-> ( ( v G e /\ ( # ` v ) = ( y + 1 ) ) -> ps ) ) ) |
| 22 | 21 | 2albidv | |- ( x = ( y + 1 ) -> ( A. v A. e ( ( v G e /\ ( # ` v ) = x ) -> ps ) <-> A. v A. e ( ( v G e /\ ( # ` v ) = ( y + 1 ) ) -> ps ) ) ) |
| 23 | eqeq2 | |- ( x = n -> ( ( # ` v ) = x <-> ( # ` v ) = n ) ) |
|
| 24 | 23 | anbi2d | |- ( x = n -> ( ( v G e /\ ( # ` v ) = x ) <-> ( v G e /\ ( # ` v ) = n ) ) ) |
| 25 | 24 | imbi1d | |- ( x = n -> ( ( ( v G e /\ ( # ` v ) = x ) -> ps ) <-> ( ( v G e /\ ( # ` v ) = n ) -> ps ) ) ) |
| 26 | 25 | 2albidv | |- ( x = n -> ( A. v A. e ( ( v G e /\ ( # ` v ) = x ) -> ps ) <-> A. v A. e ( ( v G e /\ ( # ` v ) = n ) -> ps ) ) ) |
| 27 | 7 | gen2 | |- A. v A. e ( ( v G e /\ ( # ` v ) = 0 ) -> ps ) |
| 28 | breq12 | |- ( ( v = w /\ e = f ) -> ( v G e <-> w G f ) ) |
|
| 29 | fveqeq2 | |- ( v = w -> ( ( # ` v ) = y <-> ( # ` w ) = y ) ) |
|
| 30 | 29 | adantr | |- ( ( v = w /\ e = f ) -> ( ( # ` v ) = y <-> ( # ` w ) = y ) ) |
| 31 | 28 30 | anbi12d | |- ( ( v = w /\ e = f ) -> ( ( v G e /\ ( # ` v ) = y ) <-> ( w G f /\ ( # ` w ) = y ) ) ) |
| 32 | 31 4 | imbi12d | |- ( ( v = w /\ e = f ) -> ( ( ( v G e /\ ( # ` v ) = y ) -> ps ) <-> ( ( w G f /\ ( # ` w ) = y ) -> th ) ) ) |
| 33 | 32 | cbval2vw | |- ( A. v A. e ( ( v G e /\ ( # ` v ) = y ) -> ps ) <-> A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) ) |
| 34 | nn0p1gt0 | |- ( y e. NN0 -> 0 < ( y + 1 ) ) |
|
| 35 | 34 | adantr | |- ( ( y e. NN0 /\ ( # ` v ) = ( y + 1 ) ) -> 0 < ( y + 1 ) ) |
| 36 | simpr | |- ( ( y e. NN0 /\ ( # ` v ) = ( y + 1 ) ) -> ( # ` v ) = ( y + 1 ) ) |
|
| 37 | 35 36 | breqtrrd | |- ( ( y e. NN0 /\ ( # ` v ) = ( y + 1 ) ) -> 0 < ( # ` v ) ) |
| 38 | 37 | adantrl | |- ( ( y e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) ) ) -> 0 < ( # ` v ) ) |
| 39 | hashgt0elex | |- ( ( v e. _V /\ 0 < ( # ` v ) ) -> E. n n e. v ) |
|
| 40 | vex | |- v e. _V |
|
| 41 | simpr | |- ( ( y e. NN0 /\ n e. v ) -> n e. v ) |
|
| 42 | simpl | |- ( ( y e. NN0 /\ n e. v ) -> y e. NN0 ) |
|
| 43 | hashdifsnp1 | |- ( ( v e. _V /\ n e. v /\ y e. NN0 ) -> ( ( # ` v ) = ( y + 1 ) -> ( # ` ( v \ { n } ) ) = y ) ) |
|
| 44 | 40 41 42 43 | mp3an2i | |- ( ( y e. NN0 /\ n e. v ) -> ( ( # ` v ) = ( y + 1 ) -> ( # ` ( v \ { n } ) ) = y ) ) |
| 45 | 44 | imp | |- ( ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) -> ( # ` ( v \ { n } ) ) = y ) |
| 46 | peano2nn0 | |- ( y e. NN0 -> ( y + 1 ) e. NN0 ) |
|
| 47 | 46 | ad2antrr | |- ( ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) -> ( y + 1 ) e. NN0 ) |
| 48 | 47 | ad2antlr | |- ( ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) /\ v G e ) -> ( y + 1 ) e. NN0 ) |
| 49 | simpr | |- ( ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) /\ v G e ) -> v G e ) |
|
| 50 | simplrr | |- ( ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) /\ v G e ) -> ( # ` v ) = ( y + 1 ) ) |
|
| 51 | simprlr | |- ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) -> n e. v ) |
|
| 52 | 51 | adantr | |- ( ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) /\ v G e ) -> n e. v ) |
| 53 | 49 50 52 | 3jca | |- ( ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) /\ v G e ) -> ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) |
| 54 | 48 53 | jca | |- ( ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) /\ v G e ) -> ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) ) |
| 55 | 40 | difexi | |- ( v \ { n } ) e. _V |
| 56 | breq12 | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( w G f <-> ( v \ { n } ) G F ) ) |
|
| 57 | fveqeq2 | |- ( w = ( v \ { n } ) -> ( ( # ` w ) = y <-> ( # ` ( v \ { n } ) ) = y ) ) |
|
| 58 | 57 | adantr | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( ( # ` w ) = y <-> ( # ` ( v \ { n } ) ) = y ) ) |
| 59 | 56 58 | anbi12d | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( ( w G f /\ ( # ` w ) = y ) <-> ( ( v \ { n } ) G F /\ ( # ` ( v \ { n } ) ) = y ) ) ) |
| 60 | 59 6 | imbi12d | |- ( ( w = ( v \ { n } ) /\ f = F ) -> ( ( ( w G f /\ ( # ` w ) = y ) -> th ) <-> ( ( ( v \ { n } ) G F /\ ( # ` ( v \ { n } ) ) = y ) -> ch ) ) ) |
| 61 | 60 | spc2gv | |- ( ( ( v \ { n } ) e. _V /\ F e. _V ) -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ( ( ( v \ { n } ) G F /\ ( # ` ( v \ { n } ) ) = y ) -> ch ) ) ) |
| 62 | 55 2 61 | mp2an | |- ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ( ( ( v \ { n } ) G F /\ ( # ` ( v \ { n } ) ) = y ) -> ch ) ) |
| 63 | 62 | expdimp | |- ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) -> ( ( # ` ( v \ { n } ) ) = y -> ch ) ) |
| 64 | 63 | ad2antrr | |- ( ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) /\ v G e ) -> ( ( # ` ( v \ { n } ) ) = y -> ch ) ) |
| 65 | 54 64 8 | syl6an | |- ( ( ( ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) /\ ( v \ { n } ) G F ) /\ ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) ) /\ v G e ) -> ( ( # ` ( v \ { n } ) ) = y -> ps ) ) |
| 66 | 65 | exp41 | |- ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ( ( v \ { n } ) G F -> ( ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) -> ( v G e -> ( ( # ` ( v \ { n } ) ) = y -> ps ) ) ) ) ) |
| 67 | 66 | com15 | |- ( ( # ` ( v \ { n } ) ) = y -> ( ( v \ { n } ) G F -> ( ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 68 | 67 | com23 | |- ( ( # ` ( v \ { n } ) ) = y -> ( ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) -> ( ( v \ { n } ) G F -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 69 | 45 68 | mpcom | |- ( ( ( y e. NN0 /\ n e. v ) /\ ( # ` v ) = ( y + 1 ) ) -> ( ( v \ { n } ) G F -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) |
| 70 | 69 | ex | |- ( ( y e. NN0 /\ n e. v ) -> ( ( # ` v ) = ( y + 1 ) -> ( ( v \ { n } ) G F -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 71 | 70 | com23 | |- ( ( y e. NN0 /\ n e. v ) -> ( ( v \ { n } ) G F -> ( ( # ` v ) = ( y + 1 ) -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 72 | 71 | ex | |- ( y e. NN0 -> ( n e. v -> ( ( v \ { n } ) G F -> ( ( # ` v ) = ( y + 1 ) -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) ) |
| 73 | 72 | com15 | |- ( v G e -> ( n e. v -> ( ( v \ { n } ) G F -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) ) |
| 74 | 73 | imp | |- ( ( v G e /\ n e. v ) -> ( ( v \ { n } ) G F -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 75 | 5 74 | mpd | |- ( ( v G e /\ n e. v ) -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) |
| 76 | 75 | ex | |- ( v G e -> ( n e. v -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 77 | 76 | com4l | |- ( n e. v -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 78 | 77 | exlimiv | |- ( E. n n e. v -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 79 | 39 78 | syl | |- ( ( v e. _V /\ 0 < ( # ` v ) ) -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 80 | 79 | ex | |- ( v e. _V -> ( 0 < ( # ` v ) -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( v G e -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) ) |
| 81 | 80 | com25 | |- ( v e. _V -> ( v G e -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( 0 < ( # ` v ) -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) ) |
| 82 | 81 | elv | |- ( v G e -> ( ( # ` v ) = ( y + 1 ) -> ( y e. NN0 -> ( 0 < ( # ` v ) -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) ) |
| 83 | 82 | imp | |- ( ( v G e /\ ( # ` v ) = ( y + 1 ) ) -> ( y e. NN0 -> ( 0 < ( # ` v ) -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) ) |
| 84 | 83 | impcom | |- ( ( y e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) ) ) -> ( 0 < ( # ` v ) -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) ) |
| 85 | 38 84 | mpd | |- ( ( y e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) ) ) -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> ps ) ) |
| 86 | 85 | impancom | |- ( ( y e. NN0 /\ A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) ) -> ( ( v G e /\ ( # ` v ) = ( y + 1 ) ) -> ps ) ) |
| 87 | 86 | alrimivv | |- ( ( y e. NN0 /\ A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) ) -> A. v A. e ( ( v G e /\ ( # ` v ) = ( y + 1 ) ) -> ps ) ) |
| 88 | 87 | ex | |- ( y e. NN0 -> ( A. w A. f ( ( w G f /\ ( # ` w ) = y ) -> th ) -> A. v A. e ( ( v G e /\ ( # ` v ) = ( y + 1 ) ) -> ps ) ) ) |
| 89 | 33 88 | biimtrid | |- ( y e. NN0 -> ( A. v A. e ( ( v G e /\ ( # ` v ) = y ) -> ps ) -> A. v A. e ( ( v G e /\ ( # ` v ) = ( y + 1 ) ) -> ps ) ) ) |
| 90 | 14 18 22 26 27 89 | nn0ind | |- ( n e. NN0 -> A. v A. e ( ( v G e /\ ( # ` v ) = n ) -> ps ) ) |
| 91 | 1 | brrelex12i | |- ( V G E -> ( V e. _V /\ E e. _V ) ) |
| 92 | breq12 | |- ( ( v = V /\ e = E ) -> ( v G e <-> V G E ) ) |
|
| 93 | fveqeq2 | |- ( v = V -> ( ( # ` v ) = n <-> ( # ` V ) = n ) ) |
|
| 94 | 93 | adantr | |- ( ( v = V /\ e = E ) -> ( ( # ` v ) = n <-> ( # ` V ) = n ) ) |
| 95 | 92 94 | anbi12d | |- ( ( v = V /\ e = E ) -> ( ( v G e /\ ( # ` v ) = n ) <-> ( V G E /\ ( # ` V ) = n ) ) ) |
| 96 | 95 3 | imbi12d | |- ( ( v = V /\ e = E ) -> ( ( ( v G e /\ ( # ` v ) = n ) -> ps ) <-> ( ( V G E /\ ( # ` V ) = n ) -> ph ) ) ) |
| 97 | 96 | spc2gv | |- ( ( V e. _V /\ E e. _V ) -> ( A. v A. e ( ( v G e /\ ( # ` v ) = n ) -> ps ) -> ( ( V G E /\ ( # ` V ) = n ) -> ph ) ) ) |
| 98 | 97 | com23 | |- ( ( V e. _V /\ E e. _V ) -> ( ( V G E /\ ( # ` V ) = n ) -> ( A. v A. e ( ( v G e /\ ( # ` v ) = n ) -> ps ) -> ph ) ) ) |
| 99 | 98 | expd | |- ( ( V e. _V /\ E e. _V ) -> ( V G E -> ( ( # ` V ) = n -> ( A. v A. e ( ( v G e /\ ( # ` v ) = n ) -> ps ) -> ph ) ) ) ) |
| 100 | 91 99 | mpcom | |- ( V G E -> ( ( # ` V ) = n -> ( A. v A. e ( ( v G e /\ ( # ` v ) = n ) -> ps ) -> ph ) ) ) |
| 101 | 100 | imp | |- ( ( V G E /\ ( # ` V ) = n ) -> ( A. v A. e ( ( v G e /\ ( # ` v ) = n ) -> ps ) -> ph ) ) |
| 102 | 90 101 | syl5 | |- ( ( V G E /\ ( # ` V ) = n ) -> ( n e. NN0 -> ph ) ) |
| 103 | 102 | expcom | |- ( ( # ` V ) = n -> ( V G E -> ( n e. NN0 -> ph ) ) ) |
| 104 | 103 | com23 | |- ( ( # ` V ) = n -> ( n e. NN0 -> ( V G E -> ph ) ) ) |
| 105 | 104 | eqcoms | |- ( n = ( # ` V ) -> ( n e. NN0 -> ( V G E -> ph ) ) ) |
| 106 | 105 | imp | |- ( ( n = ( # ` V ) /\ n e. NN0 ) -> ( V G E -> ph ) ) |
| 107 | 106 | exlimiv | |- ( E. n ( n = ( # ` V ) /\ n e. NN0 ) -> ( V G E -> ph ) ) |
| 108 | 10 107 | sylbi | |- ( ( # ` V ) e. NN0 -> ( V G E -> ph ) ) |
| 109 | 9 108 | syl | |- ( V e. Fin -> ( V G E -> ph ) ) |
| 110 | 109 | impcom | |- ( ( V G E /\ V e. Fin ) -> ph ) |