This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with L = 0 (see opfi1ind ) or L = 1 . (Contributed by AV, 22-Oct-2020) (Revised by AV, 28-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opfi1uzind.e | ⊢ 𝐸 ∈ V | |
| opfi1uzind.f | ⊢ 𝐹 ∈ V | ||
| opfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 | ||
| opfi1uzind.1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) | ||
| opfi1uzind.2 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) | ||
| opfi1uzind.3 | ⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣 ) → 〈 ( 𝑣 ∖ { 𝑛 } ) , 𝐹 〉 ∈ 𝐺 ) | ||
| opfi1uzind.4 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) | ||
| opfi1uzind.base | ⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) | ||
| opfi1uzind.step | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) | ||
| Assertion | opfi1uzind | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opfi1uzind.e | ⊢ 𝐸 ∈ V | |
| 2 | opfi1uzind.f | ⊢ 𝐹 ∈ V | |
| 3 | opfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 | |
| 4 | opfi1uzind.1 | ⊢ ( ( 𝑣 = 𝑉 ∧ 𝑒 = 𝐸 ) → ( 𝜓 ↔ 𝜑 ) ) | |
| 5 | opfi1uzind.2 | ⊢ ( ( 𝑣 = 𝑤 ∧ 𝑒 = 𝑓 ) → ( 𝜓 ↔ 𝜃 ) ) | |
| 6 | opfi1uzind.3 | ⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣 ) → 〈 ( 𝑣 ∖ { 𝑛 } ) , 𝐹 〉 ∈ 𝐺 ) | |
| 7 | opfi1uzind.4 | ⊢ ( ( 𝑤 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑓 = 𝐹 ) → ( 𝜃 ↔ 𝜒 ) ) | |
| 8 | opfi1uzind.base | ⊢ ( ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) | |
| 9 | opfi1uzind.step | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) | |
| 10 | 1 | a1i | ⊢ ( 𝑎 = 𝑉 → 𝐸 ∈ V ) |
| 11 | opeq12 | ⊢ ( ( 𝑎 = 𝑉 ∧ 𝑏 = 𝐸 ) → 〈 𝑎 , 𝑏 〉 = 〈 𝑉 , 𝐸 〉 ) | |
| 12 | 11 | eleq1d | ⊢ ( ( 𝑎 = 𝑉 ∧ 𝑏 = 𝐸 ) → ( 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ↔ 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ) ) |
| 13 | 10 12 | sbcied | ⊢ ( 𝑎 = 𝑉 → ( [ 𝐸 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ↔ 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ) ) |
| 14 | 13 | sbcieg | ⊢ ( 𝑉 ∈ Fin → ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ↔ 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ) ) |
| 15 | 14 | biimparc | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ) → [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ) |
| 16 | 15 | 3adant3 | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ) |
| 17 | vex | ⊢ 𝑣 ∈ V | |
| 18 | vex | ⊢ 𝑒 ∈ V | |
| 19 | opeq12 | ⊢ ( ( 𝑎 = 𝑣 ∧ 𝑏 = 𝑒 ) → 〈 𝑎 , 𝑏 〉 = 〈 𝑣 , 𝑒 〉 ) | |
| 20 | 19 | eleq1d | ⊢ ( ( 𝑎 = 𝑣 ∧ 𝑏 = 𝑒 ) → ( 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ↔ 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ) ) |
| 21 | 17 18 20 | sbc2ie | ⊢ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ↔ 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ) |
| 22 | 21 6 | sylanb | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣 ) → 〈 ( 𝑣 ∖ { 𝑛 } ) , 𝐹 〉 ∈ 𝐺 ) |
| 23 | 17 | difexi | ⊢ ( 𝑣 ∖ { 𝑛 } ) ∈ V |
| 24 | opeq12 | ⊢ ( ( 𝑎 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑏 = 𝐹 ) → 〈 𝑎 , 𝑏 〉 = 〈 ( 𝑣 ∖ { 𝑛 } ) , 𝐹 〉 ) | |
| 25 | 24 | eleq1d | ⊢ ( ( 𝑎 = ( 𝑣 ∖ { 𝑛 } ) ∧ 𝑏 = 𝐹 ) → ( 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ↔ 〈 ( 𝑣 ∖ { 𝑛 } ) , 𝐹 〉 ∈ 𝐺 ) ) |
| 26 | 23 2 25 | sbc2ie | ⊢ ( [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ↔ 〈 ( 𝑣 ∖ { 𝑛 } ) , 𝐹 〉 ∈ 𝐺 ) |
| 27 | 22 26 | sylibr | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣 ) → [ ( 𝑣 ∖ { 𝑛 } ) / 𝑎 ] [ 𝐹 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ) |
| 28 | 21 8 | sylanb | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = 𝐿 ) → 𝜓 ) |
| 29 | 21 | 3anbi1i | ⊢ ( ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ↔ ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) |
| 30 | 29 | anbi2i | ⊢ ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ↔ ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( 〈 𝑣 , 𝑒 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ) |
| 31 | 30 9 | sylanb | ⊢ ( ( ( ( 𝑦 + 1 ) ∈ ℕ0 ∧ ( [ 𝑣 / 𝑎 ] [ 𝑒 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ∧ ( ♯ ‘ 𝑣 ) = ( 𝑦 + 1 ) ∧ 𝑛 ∈ 𝑣 ) ) ∧ 𝜒 ) → 𝜓 ) |
| 32 | 2 3 4 5 27 7 28 31 | fi1uzind | ⊢ ( ( [ 𝑉 / 𝑎 ] [ 𝐸 / 𝑏 ] 〈 𝑎 , 𝑏 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |
| 33 | 16 32 | syld3an1 | ⊢ ( ( 〈 𝑉 , 𝐸 〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ ( ♯ ‘ 𝑉 ) ) → 𝜑 ) |