This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ball around a point P , alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blval2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝑃 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxr | ⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ* ) | |
| 2 | blvalps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) | |
| 3 | 1 2 | syl3an3 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) |
| 4 | nfv | ⊢ Ⅎ 𝑥 ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝑃 } ) | |
| 6 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } | |
| 7 | psmetf | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) | |
| 8 | ffn | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) | |
| 9 | elpreima | ⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 〈 𝑃 , 𝑥 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ↔ ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ) ) ) | |
| 10 | 7 8 9 | 3syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 〈 𝑃 , 𝑥 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ↔ ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ) ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 〈 𝑃 , 𝑥 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ↔ ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ) ) ) |
| 12 | opelxp | ⊢ ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ↔ ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) | |
| 13 | 12 | baib | ⊢ ( 𝑃 ∈ 𝑋 → ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 15 | 14 | biimpd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) → 𝑥 ∈ 𝑋 ) ) |
| 16 | 15 | adantrd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ) → 𝑥 ∈ 𝑋 ) ) |
| 17 | simprl | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) → 𝑥 ∈ 𝑋 ) | |
| 18 | 17 | ex | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) → 𝑥 ∈ 𝑋 ) ) |
| 19 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑃 ∈ 𝑋 ) | |
| 20 | 19 13 | syl | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) ) |
| 21 | df-ov | ⊢ ( 𝑃 𝐷 𝑥 ) = ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) | |
| 22 | 21 | eleq1i | ⊢ ( ( 𝑃 𝐷 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ) |
| 23 | 0xr | ⊢ 0 ∈ ℝ* | |
| 24 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ+ ) | |
| 25 | 24 | rpxrd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ* ) |
| 26 | elico1 | ⊢ ( ( 0 ∈ ℝ* ∧ 𝑅 ∈ ℝ* ) → ( ( 𝑃 𝐷 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 𝐷 𝑥 ) ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) | |
| 27 | 23 25 26 | sylancr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 𝐷 𝑥 ) ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 28 | df-3an | ⊢ ( ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 𝐷 𝑥 ) ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ↔ ( ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 𝐷 𝑥 ) ) ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) | |
| 29 | simpl1 | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 30 | simpr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 31 | psmetcl | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ) | |
| 32 | 29 19 30 31 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ) |
| 33 | psmetge0 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝑥 ) ) | |
| 34 | 29 19 30 33 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑃 𝐷 𝑥 ) ) |
| 35 | 32 34 | jca | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 𝐷 𝑥 ) ) ) |
| 36 | 35 | biantrurd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑥 ) < 𝑅 ↔ ( ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 𝐷 𝑥 ) ) ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 37 | 28 36 | bitr4id | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑃 𝐷 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 𝐷 𝑥 ) ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ↔ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) |
| 38 | 27 37 | bitrd | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑃 𝐷 𝑥 ) ∈ ( 0 [,) 𝑅 ) ↔ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) |
| 39 | 22 38 | bitr3id | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ↔ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) |
| 40 | 20 39 | anbi12d | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 41 | 40 | ex | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑥 ∈ 𝑋 → ( ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) ) |
| 42 | 16 18 41 | pm5.21ndd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( 〈 𝑃 , 𝑥 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝑃 , 𝑥 〉 ) ∈ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 43 | 11 42 | bitrd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 〈 𝑃 , 𝑥 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 44 | elimasng | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ V ) → ( 𝑥 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝑃 } ) ↔ 〈 𝑃 , 𝑥 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ) ) | |
| 45 | 44 | elvd | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝑥 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝑃 } ) ↔ 〈 𝑃 , 𝑥 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ) ) |
| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑥 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝑃 } ) ↔ 〈 𝑃 , 𝑥 〉 ∈ ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) ) ) |
| 47 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) | |
| 48 | 47 | a1i | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑃 𝐷 𝑥 ) < 𝑅 ) ) ) |
| 49 | 43 46 48 | 3bitr4d | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑥 ∈ ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝑃 } ) ↔ 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) ) |
| 50 | 4 5 6 49 | eqrd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝑃 } ) = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) < 𝑅 } ) |
| 51 | 3 50 | eqtr4d | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) = ( ( ◡ 𝐷 “ ( 0 [,) 𝑅 ) ) “ { 𝑃 } ) ) |