This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ball around a point P , alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blval2 | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) = ( ( `' D " ( 0 [,) R ) ) " { P } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpxr | |- ( R e. RR+ -> R e. RR* ) |
|
| 2 | blvalps | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) = { x e. X | ( P D x ) < R } ) |
|
| 3 | 1 2 | syl3an3 | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) = { x e. X | ( P D x ) < R } ) |
| 4 | nfv | |- F/ x ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) |
|
| 5 | nfcv | |- F/_ x ( ( `' D " ( 0 [,) R ) ) " { P } ) |
|
| 6 | nfrab1 | |- F/_ x { x e. X | ( P D x ) < R } |
|
| 7 | psmetf | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 8 | ffn | |- ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) |
|
| 9 | elpreima | |- ( D Fn ( X X. X ) -> ( <. P , x >. e. ( `' D " ( 0 [,) R ) ) <-> ( <. P , x >. e. ( X X. X ) /\ ( D ` <. P , x >. ) e. ( 0 [,) R ) ) ) ) |
|
| 10 | 7 8 9 | 3syl | |- ( D e. ( PsMet ` X ) -> ( <. P , x >. e. ( `' D " ( 0 [,) R ) ) <-> ( <. P , x >. e. ( X X. X ) /\ ( D ` <. P , x >. ) e. ( 0 [,) R ) ) ) ) |
| 11 | 10 | 3ad2ant1 | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( <. P , x >. e. ( `' D " ( 0 [,) R ) ) <-> ( <. P , x >. e. ( X X. X ) /\ ( D ` <. P , x >. ) e. ( 0 [,) R ) ) ) ) |
| 12 | opelxp | |- ( <. P , x >. e. ( X X. X ) <-> ( P e. X /\ x e. X ) ) |
|
| 13 | 12 | baib | |- ( P e. X -> ( <. P , x >. e. ( X X. X ) <-> x e. X ) ) |
| 14 | 13 | 3ad2ant2 | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( <. P , x >. e. ( X X. X ) <-> x e. X ) ) |
| 15 | 14 | biimpd | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( <. P , x >. e. ( X X. X ) -> x e. X ) ) |
| 16 | 15 | adantrd | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( ( <. P , x >. e. ( X X. X ) /\ ( D ` <. P , x >. ) e. ( 0 [,) R ) ) -> x e. X ) ) |
| 17 | simprl | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ ( x e. X /\ ( P D x ) < R ) ) -> x e. X ) |
|
| 18 | 17 | ex | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( ( x e. X /\ ( P D x ) < R ) -> x e. X ) ) |
| 19 | simpl2 | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> P e. X ) |
|
| 20 | 19 13 | syl | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( <. P , x >. e. ( X X. X ) <-> x e. X ) ) |
| 21 | df-ov | |- ( P D x ) = ( D ` <. P , x >. ) |
|
| 22 | 21 | eleq1i | |- ( ( P D x ) e. ( 0 [,) R ) <-> ( D ` <. P , x >. ) e. ( 0 [,) R ) ) |
| 23 | 0xr | |- 0 e. RR* |
|
| 24 | simpl3 | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> R e. RR+ ) |
|
| 25 | 24 | rpxrd | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> R e. RR* ) |
| 26 | elico1 | |- ( ( 0 e. RR* /\ R e. RR* ) -> ( ( P D x ) e. ( 0 [,) R ) <-> ( ( P D x ) e. RR* /\ 0 <_ ( P D x ) /\ ( P D x ) < R ) ) ) |
|
| 27 | 23 25 26 | sylancr | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( ( P D x ) e. ( 0 [,) R ) <-> ( ( P D x ) e. RR* /\ 0 <_ ( P D x ) /\ ( P D x ) < R ) ) ) |
| 28 | df-3an | |- ( ( ( P D x ) e. RR* /\ 0 <_ ( P D x ) /\ ( P D x ) < R ) <-> ( ( ( P D x ) e. RR* /\ 0 <_ ( P D x ) ) /\ ( P D x ) < R ) ) |
|
| 29 | simpl1 | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> D e. ( PsMet ` X ) ) |
|
| 30 | simpr | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> x e. X ) |
|
| 31 | psmetcl | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ x e. X ) -> ( P D x ) e. RR* ) |
|
| 32 | 29 19 30 31 | syl3anc | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( P D x ) e. RR* ) |
| 33 | psmetge0 | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ x e. X ) -> 0 <_ ( P D x ) ) |
|
| 34 | 29 19 30 33 | syl3anc | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> 0 <_ ( P D x ) ) |
| 35 | 32 34 | jca | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( ( P D x ) e. RR* /\ 0 <_ ( P D x ) ) ) |
| 36 | 35 | biantrurd | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( ( P D x ) < R <-> ( ( ( P D x ) e. RR* /\ 0 <_ ( P D x ) ) /\ ( P D x ) < R ) ) ) |
| 37 | 28 36 | bitr4id | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( ( ( P D x ) e. RR* /\ 0 <_ ( P D x ) /\ ( P D x ) < R ) <-> ( P D x ) < R ) ) |
| 38 | 27 37 | bitrd | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( ( P D x ) e. ( 0 [,) R ) <-> ( P D x ) < R ) ) |
| 39 | 22 38 | bitr3id | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( ( D ` <. P , x >. ) e. ( 0 [,) R ) <-> ( P D x ) < R ) ) |
| 40 | 20 39 | anbi12d | |- ( ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) /\ x e. X ) -> ( ( <. P , x >. e. ( X X. X ) /\ ( D ` <. P , x >. ) e. ( 0 [,) R ) ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 41 | 40 | ex | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( x e. X -> ( ( <. P , x >. e. ( X X. X ) /\ ( D ` <. P , x >. ) e. ( 0 [,) R ) ) <-> ( x e. X /\ ( P D x ) < R ) ) ) ) |
| 42 | 16 18 41 | pm5.21ndd | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( ( <. P , x >. e. ( X X. X ) /\ ( D ` <. P , x >. ) e. ( 0 [,) R ) ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 43 | 11 42 | bitrd | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( <. P , x >. e. ( `' D " ( 0 [,) R ) ) <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 44 | elimasng | |- ( ( P e. X /\ x e. _V ) -> ( x e. ( ( `' D " ( 0 [,) R ) ) " { P } ) <-> <. P , x >. e. ( `' D " ( 0 [,) R ) ) ) ) |
|
| 45 | 44 | elvd | |- ( P e. X -> ( x e. ( ( `' D " ( 0 [,) R ) ) " { P } ) <-> <. P , x >. e. ( `' D " ( 0 [,) R ) ) ) ) |
| 46 | 45 | 3ad2ant2 | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( x e. ( ( `' D " ( 0 [,) R ) ) " { P } ) <-> <. P , x >. e. ( `' D " ( 0 [,) R ) ) ) ) |
| 47 | rabid | |- ( x e. { x e. X | ( P D x ) < R } <-> ( x e. X /\ ( P D x ) < R ) ) |
|
| 48 | 47 | a1i | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( x e. { x e. X | ( P D x ) < R } <-> ( x e. X /\ ( P D x ) < R ) ) ) |
| 49 | 43 46 48 | 3bitr4d | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( x e. ( ( `' D " ( 0 [,) R ) ) " { P } ) <-> x e. { x e. X | ( P D x ) < R } ) ) |
| 50 | 4 5 6 49 | eqrd | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( ( `' D " ( 0 [,) R ) ) " { P } ) = { x e. X | ( P D x ) < R } ) |
| 51 | 3 50 | eqtr4d | |- ( ( D e. ( PsMet ` X ) /\ P e. X /\ R e. RR+ ) -> ( P ( ball ` D ) R ) = ( ( `' D " ( 0 [,) R ) ) " { P } ) ) |