This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007) (Revised by Mario Carneiro, 12-Nov-2013) (Revised by Thierry Arnoux, 11-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blssexps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blssps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑥 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ) | |
| 2 | sstr | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) | |
| 3 | 2 | expcom | ⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |
| 4 | 3 | reximdv | ⊢ ( 𝑥 ⊆ 𝐴 → ( ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑥 → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |
| 5 | 1 4 | syl5com | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ∧ 𝑃 ∈ 𝑥 ) → ( 𝑥 ⊆ 𝐴 → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ) ∧ 𝑃 ∈ 𝑥 ) → ( 𝑥 ⊆ 𝐴 → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |
| 7 | 6 | expimpd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ) → ( ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ) → ( ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |
| 9 | 8 | rexlimdva | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) → ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |
| 10 | simpll | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 11 | simplr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → 𝑃 ∈ 𝑋 ) | |
| 12 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 13 | 12 | ad2antrl | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → 𝑟 ∈ ℝ* ) |
| 14 | blelrnps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran ( ball ‘ 𝐷 ) ) | |
| 15 | 10 11 13 14 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran ( ball ‘ 𝐷 ) ) |
| 16 | simprl | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → 𝑟 ∈ ℝ+ ) | |
| 17 | blcntrps | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ) | |
| 18 | 10 11 16 17 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ) |
| 19 | simprr | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) | |
| 20 | eleq2 | ⊢ ( 𝑥 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ) ) | |
| 21 | sseq1 | ⊢ ( 𝑥 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) | |
| 22 | 20 21 | anbi12d | ⊢ ( 𝑥 = ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) → ( ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) ) |
| 23 | 22 | rspcev | ⊢ ( ( ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∈ ran ( ball ‘ 𝐷 ) ∧ ( 𝑃 ∈ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 24 | 15 18 19 23 | syl12anc | ⊢ ( ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) |
| 25 | 24 | rexlimdvaa | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 → ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ) ) |
| 26 | 9 25 | impbid | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) → ( ∃ 𝑥 ∈ ran ( ball ‘ 𝐷 ) ( 𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴 ) ↔ ∃ 𝑟 ∈ ℝ+ ( 𝑃 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝐴 ) ) |