This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A consequence of relative atomicity. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chrelat3 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrelat2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) | |
| 2 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ↔ ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) | |
| 3 | 1 2 | bitrdi | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐴 ⊆ 𝐵 ↔ ¬ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |
| 4 | 3 | con4bid | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) ) |
| 5 | iman | ⊢ ( ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ↔ ¬ ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) | |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ↔ ∀ 𝑥 ∈ HAtoms ¬ ( 𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵 ) ) |
| 7 | 4 6 | bitr4di | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐴 → 𝑥 ⊆ 𝐵 ) ) ) |