This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of MaedaMaeda p. 30. ( chpssati , with /\ swapped, analog.) (Contributed by NM, 4-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlrelat1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atlrelat1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atlrelat1.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| atlrelat1.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atlrelat1 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlrelat1.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atlrelat1.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atlrelat1.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | atlrelat1.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | simp13 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) | |
| 6 | atlpos | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 8 | 1 2 3 | pltnle | ⊢ ( ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ¬ 𝑌 ≤ 𝑋 ) |
| 9 | 8 | ex | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋 ) ) |
| 10 | 7 9 | syld3an1 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋 ) ) |
| 11 | iman | ⊢ ( ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ↔ ¬ ( 𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋 ) ) | |
| 12 | ancom | ⊢ ( ( 𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋 ) ↔ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) | |
| 13 | 11 12 | xchbinx | ⊢ ( ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ↔ ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) |
| 14 | 13 | ralbii | ⊢ ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ↔ ∀ 𝑝 ∈ 𝐴 ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) |
| 15 | 1 2 4 | atlatle | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ) ) |
| 16 | 15 | 3com23 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) ) ) |
| 17 | 16 | biimprd | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋 ) → 𝑌 ≤ 𝑋 ) ) |
| 18 | 14 17 | biimtrrid | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐴 ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) → 𝑌 ≤ 𝑋 ) ) |
| 19 | 18 | con3d | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 → ¬ ∀ 𝑝 ∈ 𝐴 ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
| 20 | dfrex2 | ⊢ ( ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ↔ ¬ ∀ 𝑝 ∈ 𝐴 ¬ ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) | |
| 21 | 19 20 | imbitrrdi | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |
| 22 | 10 21 | syld | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → ∃ 𝑝 ∈ 𝐴 ( ¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌 ) ) ) |