This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a relation is antisymmetric and reflexive. U. U. R is the field of a relation by relfld . (Contributed by NM, 6-May-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asymref | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 2 3 | opeluu | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 → ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑦 ∈ ∪ ∪ 𝑅 ) ) |
| 5 | 1 4 | sylbi | ⊢ ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑦 ∈ ∪ ∪ 𝑅 ) ) |
| 6 | 5 | simpld | ⊢ ( 𝑥 𝑅 𝑦 → 𝑥 ∈ ∪ ∪ 𝑅 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑥 ∈ ∪ ∪ 𝑅 ) |
| 8 | 7 | pm4.71ri | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ) |
| 9 | 8 | bibi1i | ⊢ ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) ↔ ( ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) ) |
| 10 | elin | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) ) | |
| 11 | 2 3 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 12 | df-br | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) | |
| 13 | 11 12 | bitr3i | ⊢ ( 𝑦 𝑅 𝑥 ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) |
| 14 | 1 13 | anbi12i | ⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ ◡ 𝑅 ) ) |
| 15 | 10 14 | bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) |
| 16 | 3 | opelresi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ) |
| 17 | df-br | ⊢ ( 𝑥 I 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ I ) | |
| 18 | 3 | ideq | ⊢ ( 𝑥 I 𝑦 ↔ 𝑥 = 𝑦 ) |
| 19 | 17 18 | bitr3i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ I ↔ 𝑥 = 𝑦 ) |
| 20 | 19 | anbi2i | ⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 〈 𝑥 , 𝑦 〉 ∈ I ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) |
| 21 | 16 20 | bitri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) |
| 22 | 15 21 | bibi12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) ) |
| 23 | pm5.32 | ⊢ ( ( 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ↔ ( ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 = 𝑦 ) ) ) | |
| 24 | 9 22 23 | 3bitr4i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 25 | 24 | albii | ⊢ ( ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ∀ 𝑦 ( 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 26 | 19.21v | ⊢ ( ∀ 𝑦 ( 𝑥 ∈ ∪ ∪ 𝑅 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) | |
| 27 | 25 26 | bitri | ⊢ ( ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 28 | 27 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) |
| 29 | relcnv | ⊢ Rel ◡ 𝑅 | |
| 30 | relin2 | ⊢ ( Rel ◡ 𝑅 → Rel ( 𝑅 ∩ ◡ 𝑅 ) ) | |
| 31 | 29 30 | ax-mp | ⊢ Rel ( 𝑅 ∩ ◡ 𝑅 ) |
| 32 | relres | ⊢ Rel ( I ↾ ∪ ∪ 𝑅 ) | |
| 33 | eqrel | ⊢ ( ( Rel ( 𝑅 ∩ ◡ 𝑅 ) ∧ Rel ( I ↾ ∪ ∪ 𝑅 ) ) → ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ) ) | |
| 34 | 31 32 33 | mp2an | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝑅 ∩ ◡ 𝑅 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( I ↾ ∪ ∪ 𝑅 ) ) ) |
| 35 | df-ral | ⊢ ( ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ∪ ∪ 𝑅 → ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) ) | |
| 36 | 28 34 35 | 3bitr4i | ⊢ ( ( 𝑅 ∩ ◡ 𝑅 ) = ( I ↾ ∪ ∪ 𝑅 ) ↔ ∀ 𝑥 ∈ ∪ ∪ 𝑅 ∀ 𝑦 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ↔ 𝑥 = 𝑦 ) ) |