This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extensionality principle for relations. Theorem 3.2(ii) of Monk1 p. 33. (Contributed by NM, 2-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqrel | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrel | ⊢ ( Rel 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) | |
| 2 | ssrel | ⊢ ( Rel 𝐵 → ( 𝐵 ⊆ 𝐴 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐵 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) | |
| 3 | 1 2 | bi2anan9 | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐵 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) ) |
| 4 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 5 | 2albiim | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 → 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐵 → 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) ) | |
| 6 | 3 4 5 | 3bitr4g | ⊢ ( ( Rel 𝐴 ∧ Rel 𝐵 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ∀ 𝑦 ( 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐵 ) ) ) |