This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of implication over biconditional. Theorem *5.32 of WhiteheadRussell p. 125. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm5.32 | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notbi | ⊢ ( ( 𝜓 ↔ 𝜒 ) ↔ ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) | |
| 2 | 1 | imbi2i | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) ) |
| 3 | pm5.74 | ⊢ ( ( 𝜑 → ( ¬ 𝜓 ↔ ¬ 𝜒 ) ) ↔ ( ( 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 → ¬ 𝜒 ) ) ) | |
| 4 | notbi | ⊢ ( ( ( 𝜑 → ¬ 𝜓 ) ↔ ( 𝜑 → ¬ 𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) ) | |
| 5 | 2 3 4 | 3bitri | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) ) |
| 6 | df-an | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜓 ) ) | |
| 7 | df-an | ⊢ ( ( 𝜑 ∧ 𝜒 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) | |
| 8 | 6 7 | bibi12i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) ↔ ( ¬ ( 𝜑 → ¬ 𝜓 ) ↔ ¬ ( 𝜑 → ¬ 𝜒 ) ) ) |
| 9 | 5 8 | bitr4i | ⊢ ( ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) ) |