This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the algebraic span of a set of vectors in an algebra. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-asp | ⊢ AlgSpan = ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | casp | ⊢ AlgSpan | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | casa | ⊢ AssAlg | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 | vt | ⊢ 𝑡 | |
| 9 | csubrg | ⊢ SubRing | |
| 10 | 5 9 | cfv | ⊢ ( SubRing ‘ 𝑤 ) |
| 11 | clss | ⊢ LSubSp | |
| 12 | 5 11 | cfv | ⊢ ( LSubSp ‘ 𝑤 ) |
| 13 | 10 12 | cin | ⊢ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) |
| 14 | 3 | cv | ⊢ 𝑠 |
| 15 | 8 | cv | ⊢ 𝑡 |
| 16 | 14 15 | wss | ⊢ 𝑠 ⊆ 𝑡 |
| 17 | 16 8 13 | crab | ⊢ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } |
| 18 | 17 | cint | ⊢ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } |
| 19 | 3 7 18 | cmpt | ⊢ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) |
| 20 | 1 2 19 | cmpt | ⊢ ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 21 | 0 20 | wceq | ⊢ AlgSpan = ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) ) |