This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinf | ⊢ arcsin : ℂ ⟶ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-asin | ⊢ arcsin = ( 𝑥 ∈ ℂ ↦ ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ) | |
| 2 | negicn | ⊢ - i ∈ ℂ | |
| 3 | ax-icn | ⊢ i ∈ ℂ | |
| 4 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝑥 ∈ ℂ → ( i · 𝑥 ) ∈ ℂ ) |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | sqcl | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 2 ) ∈ ℂ ) | |
| 8 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝑥 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( 𝑥 ∈ ℂ → ( 1 − ( 𝑥 ↑ 2 ) ) ∈ ℂ ) |
| 10 | 9 | sqrtcld | ⊢ ( 𝑥 ∈ ℂ → ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ∈ ℂ ) |
| 11 | 5 10 | addcld | ⊢ ( 𝑥 ∈ ℂ → ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 12 | asinlem | ⊢ ( 𝑥 ∈ ℂ → ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ≠ 0 ) | |
| 13 | 11 12 | logcld | ⊢ ( 𝑥 ∈ ℂ → ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
| 14 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ∈ ℂ ) → ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ∈ ℂ ) | |
| 15 | 2 13 14 | sylancr | ⊢ ( 𝑥 ∈ ℂ → ( - i · ( log ‘ ( ( i · 𝑥 ) + ( √ ‘ ( 1 − ( 𝑥 ↑ 2 ) ) ) ) ) ) ∈ ℂ ) |
| 16 | 1 15 | fmpti | ⊢ arcsin : ℂ ⟶ ℂ |