This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for asinlem3 . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinlem3a | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imcl | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 3 | 2 | renegcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 7 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 8 | 4 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 9 | 8 | sqrtcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 10 | 9 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ ) |
| 11 | 1 | le0neg1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ≤ 0 ↔ 0 ≤ - ( ℑ ‘ 𝐴 ) ) ) |
| 12 | 11 | biimpa | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ - ( ℑ ‘ 𝐴 ) ) |
| 13 | 8 | sqrtrege0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 14 | 3 10 12 13 | addge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( - ( ℑ ‘ 𝐴 ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 15 | ax-icn | ⊢ i ∈ ℂ | |
| 16 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 𝐴 ∈ ℂ ) | |
| 17 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 18 | 15 16 17 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 19 | 18 9 | readdd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( ℜ ‘ ( i · 𝐴 ) ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 20 | negicn | ⊢ - i ∈ ℂ | |
| 21 | mulcl | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) | |
| 22 | 20 16 21 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( - i · 𝐴 ) ∈ ℂ ) |
| 23 | 22 | renegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ - ( - i · 𝐴 ) ) = - ( ℜ ‘ ( - i · 𝐴 ) ) ) |
| 24 | 15 | negnegi | ⊢ - - i = i |
| 25 | 24 | oveq1i | ⊢ ( - - i · 𝐴 ) = ( i · 𝐴 ) |
| 26 | mulneg1 | ⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - - i · 𝐴 ) = - ( - i · 𝐴 ) ) | |
| 27 | 20 16 26 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( - - i · 𝐴 ) = - ( - i · 𝐴 ) ) |
| 28 | 25 27 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( i · 𝐴 ) = - ( - i · 𝐴 ) ) |
| 29 | 28 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ - ( - i · 𝐴 ) ) ) |
| 30 | imre | ⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) |
| 32 | 31 | negeqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → - ( ℑ ‘ 𝐴 ) = - ( ℜ ‘ ( - i · 𝐴 ) ) ) |
| 33 | 23 29 32 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( i · 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 34 | 33 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ( ℜ ‘ ( i · 𝐴 ) ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( - ( ℑ ‘ 𝐴 ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 35 | 19 34 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( - ( ℑ ‘ 𝐴 ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 36 | 14 35 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |